Data Structures

AVL Tree Proof (and BTree)
CS 225
October 2, 2023
Brad Solomon \& G Carl Evans

Department of Computer Science

Learning Objectives

Review and finish AVL proof

Discuss alternatives to BSTs

AVL Tree Analysis

For an AVL tree of height h:
Find runs in: $\quad 0(h)$

Insert runs in: $\quad O(h)$

Remove runs in: $\quad 0(h)$

Claim: The height of the AVL tree with n nodes is:

Plan of Action

Since our goal is to find the lower bound on \mathbf{n} given \mathbf{h}, we can begin by defining a function given \mathbf{h} which describes the smallest number of nodes in an AVL tree of height h :
$N(h)=$ minimum number of nodes in an AVL tree of height h

Simplify the Recurrence
$N(h)=1+N(h-1)+N(h-2)$

State a Theorem

Theorem: An AVL tree of height h has at least

Proof by Induction:

I. Consider an AVL tree and let \mathbf{h} denote its height.
II. Base Case:
\qquad has at least \qquad nodes.

Prove a Theorem

III. Base Case: \qquad
\qquad has at least \qquad nodes.

Prove a Theorem

IV. Induction Case:

Assume for all heights $i<h, N(i) \geq 2^{i / 2}$. Prove that $N(h) \geq 2^{h / 2}$

Prove a Theorem

V. Using a proof by induction, we have shown that:
...and inverting:

AVL Runtime Proof

An upper-bound on the height of an AVL tree is $\mathbf{O}(\lg (\mathbf{n}))$:

$$
\begin{aligned}
N(h):= & \text { Minimum \# of nodes in an AVL tree of height } h \\
N(h)= & 1+N(h-1)+N(h-2) \\
& >1+2^{(h-1) / 2+2(h-2) / 2} \\
& >2 \times 2^{(h-2) / 2}=2^{(h-2) / 2+1}=2^{h / 2}
\end{aligned}
$$

Theorem \#1:
Every AVL tree of height h has at least $2^{h / 2}$ nodes.

Summary of Balanced BST

AVL Trees

- Max height: 1.44 * $\lg (\mathrm{n})$
- Rotations:

$$
\begin{aligned}
& \text { Zero rotations on find } \\
& \text { One rotation on insert } \\
& \mathrm{O}(\mathrm{~h})==\mathrm{O}(\lg (\mathrm{n})) \text { rotations on remove }
\end{aligned}
$$

Red-Black Trees

- Max height: 2 * $\lg (n)$
- Constant number of rotations on insert (max 2), remove (max 3).

Summary of Balanced BST

Pros:

- Running Time:
- Improvement Over:
- Great for specific applications:

Summary of Balanced BST

Cons:

- Running Time:
- In-memory Requirement:

Considering hardware limitations

Can we always fit our data in main memory?

Where else can we keep our data?

Does this match our assumption that all memory lookups are $O(1)$?

B-Tree Motivation

In Big-O we have assumed uniform time for all operations, but this isn't always true.

However, seeking data from the cloud may take 40ms+. ...an O(lg(n)) AVL tree no longer looks great:

BTree Design Motivations

When large seek times become an issue, we address this by:

BTree

A BTree (of order m) is a m-ary tree
Nodes contain up to $\mathbf{m - 1}$ keys and have |keys|+1 children All leaves in a BTree are on the same level

BTree Node (of order m)

BTree Node (of order m)

What value of \mathbf{m} should we be using?

BTree Insertion

All keys within a BTree are ordered

Insert(10)
Insert(5)
Insert(7)
Insert(9)
Insert(2)

BTree Insertion

When a BTree node reaches \mathbf{m} keys (or when you try to insert):

2	5	7	9	10

Insert (2)

5	7	9	10

BTree Insertion

 $M=5$When a BTree node reaches \mathbf{m} keys, split and make a new parent.

BTree Recursive Insert

Insert always starts at a leaf but can propagate up repeatedly.

BTree Visualization/Tool

https://www.cs.usfca.edu/~galles/visualization/BTree.html

BTree Size Restrictions

By definition we have max, but do we have min? Are these trees valid?

BTree Properties

A BTrees of order \mathbf{m} is an m-ary tree and by definition:

- All keys within a node are ordered
- All leaves contain no more than $\mathbf{m - 1}$ keys.
- All internal nodes have exactly one more child than keys

Root nodes can be a leaf or have \qquad children.

All non-root, internal nodes have \qquad children.

All leaves in the tree are at the same level.

BTree

If I tell you this is a valid BTree, what is the value of m ?

