
Department of Computer Science

Data Structures
AVL Tree Proof (and BTree)

October 2, 2023 CS 225
Brad Solomon & G Carl Evans

Didnt get to!

Learning Objectives
Review and finish AVL proof

Discuss alternatives to BSTs

AVL Tree Analysis

For an AVL tree of height h:

Find runs in: __________.

Insert runs in: __________.

Remove runs in: __________.

Claim: The height of the AVL tree with n nodes is: _________________.

O(h)

O(h)

O(h)

O(log(n))

AVL Tree Analysis

n, number of nodes

h,
 h

ei
gh

t

n,
 n

um
be

r o
f n

od
es

h, height

c * g(n)

g(n)

f (n)
k

The number of nodes in the tree, f-1(h), will always
be greater than c × g-1(h) for all values where n > k.

g−1(h) c * g−1(h)

f −1(h)

 = “Tree height given nodes”f(n) = “Nodes in tree given height”f −1(h)

Plan of Action

 = minimum number of nodes in an AVL tree of height N(h) h

Since our goal is to find the lower bound on n given h, we
can begin by defining a function given h which describes the
smallest number of nodes in an AVL tree of height h:

Simplify the Recurrence
N(h) = 1 + N(h − 1) + N(h − 2)

State a Theorem

An AVL tree of height ____ has at least ____ nodes.

Theorem: An AVL tree of height h has at least __________ nodes.

Proof by Induction:

I. Consider an AVL tree and let h denote its height.

II. Base Case: ______________

Prove a Theorem

An AVL tree of height ____ has at least ____ nodes.

III. Base Case: ______________

Prove a Theorem
IV. Induction Case: ______________

Assume for all heights , . Prove that i < h N(i) ≥ 2i/2 N(h) ≥ 2h/2

Prove a Theorem
V. Using a proof by induction, we have shown that:

…and inverting:

AVL Runtime Proof
An upper-bound on the height of an AVL tree is O(lg(n)):

 N(h) := Minimum # of nodes in an AVL tree of height h
 N(h) = 1 + N(h-1) + N(h-2)

 > 1 + 2(h-1)/2 + 2(h-2)/2

 > 2 × 2(h-2)/2 = 2(h-2)/2+1 = 2h/2

 Theorem #1:

 Every AVL tree of height h has at least 2h/2 nodes.

AVL Runtime Proof
An upper-bound on the height of an AVL tree is O(lg(n)):

 # of nodes (n) ≥ N(h) > 2h/2

 n > 2h/2
 lg(n) > h/2

 2 × lg(n) > h

 h < 2 × lg(n) , for h ≥ 1

Proved: The maximum number of nodes in an AVL tree of
height h is less than 2 × lg(n).

Summary of Balanced BST
AVL Trees

- Max height: 1.44 * lg(n)

- Rotations:
 Zero rotations on find
 One rotation on insert
 O(h) == O(lg(n)) rotations on remove

Red-Black Trees

- Max height: 2 * lg(n)

- Constant number of rotations on insert (max 2), remove
(max 3).

Summary of Balanced BST
Pros:

- Running Time:

- Improvement Over:

- Great for specific applications:

Summary of Balanced BST
Cons:

- Running Time:

- In-memory Requirement:

Considering hardware limitations
Can we always fit our data in main memory?

Where else can we keep our data?

Does this match our assumption that all memory lookups are O(1)?

B-Tree Motivation
In Big-O we have assumed uniform time for all operations,
but this isn’t always true.

However, seeking data from the cloud may take 40ms+.
 …an O(lg(n)) AVL tree no longer looks great:

5

3 6

4

2

8

10

9 12

111 7

BTree Design Motivations
When large seek times become an issue, we address this by:

