Data Structures
 K-d Tree

CS 225
September 29, 2023
Brad Solomon \& G Carl Evans
5 MNERITYOF
Department of Computer Science

MP_Lists Plagiarism Report
Significant increase in plagiarism
Still processing all the FAIR cases
Remember course policies!

MP_Mosaic Extra Credit Extension
Todays lecture will 'review' several key concepts
Concepts may be new to some, extra credit is extended
Extra credit deadline: Wednesday

Learning Objectives

Discuss (one) extension beyond BST
Introduce lambda functions in C++

Finish AVL proof and introduce B-Trees

Summary of Balanced BST

AVL Trees

- Max height: ???? * $\lg (\mathrm{n})$
- Rotations:

Zero rotations on find
One rotation on insert
$\mathrm{O}(\mathrm{h})==\mathrm{O}(\lg (\mathrm{n}))$ rotations on remove

Range-based Searches

Balanced BSTs are useful structures for range-based and nearest-neighbor searches.

Q: Consider points in 1D: $\mathbf{p}=\left\{\mathbf{p}_{1}, \mathbf{p}_{\mathbf{2}}, \ldots, \mathbf{p}_{\mathrm{n}}\right\}$.
...what points fall in [11, 42]?

Ex:

Range-based Searches

Q: Consider points in 1D: $\mathbf{p}=\left\{\mathbf{p}_{1}, \mathbf{p}_{2}, \ldots, \mathbf{p}_{\mathrm{n}}\right\}$.

...what points fall in [11, 42]?

Red-Black Trees in C++

C++ provides us a balanced BST as part of the standard library:
std::map<K, V> map;

V \& std::map<K, V>::operator[](const K \&)
std::map<K, V>::erase(const K \&)

Red-Black Trees in C++

C++ provides us a balanced BST as part of the standard library: iterator std::map<K, V>::lower_bound(const K \&);
iterator std::map<K, V>::upper_bound(const K \&);

Range-based Searches

Consider points in 2D: $p=\left\{p_{1}, p_{2}, \ldots, p_{n}\right\}$.

Q: What points are in the rectangle:

$$
\left[\left(x_{1}, y_{1}\right),\left(x_{2}, y_{2}\right)\right] ?
$$

Q: What is the nearest point to $\left(\mathbf{x}_{1}, \mathbf{y}_{1}\right)$?

Range-based Searches

Consider points in 2D: $p=\left\{p_{1}, p_{2}, \ldots, p_{n}\right\}$.

Tree construction:

Range-based Searches

Range-based Searches

Nearest Neighbor: k-d tree
A k-d tree is similar but splits on points:
$(7,2),(5,4),(9,6),(4,7),(2,3),(8,1),(9,8)$

Nearest Neighbor: k-d tree

$\overbrace{(2,3)}^{(5,4)}$

Nearest Neighbor: k-d tree

This construction seems easy conceptually but...

1. Review, understand, and use quickselect
2. Review, understand, and use lambda functions

Functions as arguments

Consider the function from Excel COUNTIF(range, criteria)

Functions as arguments

Countif.hpp

```
10 template <typename Iter, typename Pred>
11 int Countif(Iter begin, Iter end, Pred pred) {
12 int count = 0;
13
14
15
16
17
18
19
20
21
22
}
```


Lambda Functions in C++

1 bool isNegative (int num) \{ return (num < 0); \}
2
class IsNegative \{
4 public:
bool operator () (int num) \{ return (num < 0); \}
\} ;
7
8 int main() \{
std:: vector<int> numbers $=\{1,102,105,4,5,27,41,-7,999\} ;$
11 auto isnegl $=$ [] (int num) \{ return (num < 0); \};
auto isnegfp = isNegative;
auto isnegfunctor = IsNegative();
cout << "There are " << Countif(numbers.begin(), numbers.end(), \qquad)
<< " negative numbers" << std: :endl;

Lambda Functions in C++

[

]

k

\}

Lambda Functions in C++

```
29 int big;
30
31
32
33
34
35
    std::cout << "How big is big? ";
    std::cin >> big;
    auto isbig = [big](int num) { return (num >= big); };
    std::cout << "There are " << Countif(numbers.begin(), numbers.end(), isbig)
        << " big numbers" << std::endl;
```


Nearest Neighbor: k-d tree

When querying a k-d tree, it acts like a BST* at first...

Nearest Neighbor: k-d tree

When querying a k-d tree, it acts like a BST* at first...

Nearest Neighbor: k-d tree

When querying a k-d tree, it acts like a BST* at first...

Nearest Neighbor: k-d tree
When querying a k-d tree, it acts like a BST* at first...

Nearest Neighbor: k-d tree
Backtracking: start recursing backwards -- store "best" possibility as you trace back

Nearest Neighbor: k-d tree

Nearest Neighbor: k-d tree
On ties, use smallerDimVal to determine which point remains curBest

Nearest Neighbor: k-d tree

Nearest Neighbor: k-d tree

Nearest Neighbor: k-d tree

Final tips:
The mp_mosaic writeup is long. READ IT

The suggestions in the writeup should be followed carefully

Plan of Action

Since our goal is to find the lower bound on \mathbf{n} given \mathbf{h}, we can begin by defining a function given \mathbf{h} which describes the smallest number of nodes in an AVL tree of height h :
$N(h)=$ minimum number of nodes in an AVL tree of height h

Simplify the Recurrence
$N(h)=1+N(h-1)+N(h-2)$

State a Theorem

Theorem: An AVL tree of height h has at least

Proof by Induction:

I. Consider an AVL tree and let \mathbf{h} denote its height.
II. Base Case:
\qquad has at least \qquad nodes.

Prove a Theorem

III. Base Case: \qquad
\qquad has at least \qquad nodes.

Prove a Theorem

IV. Induction Case:

Assume for all heights $i<h, N(i) \geq 2^{i / 2}$. Prove that $N(h) \geq 2^{h / 2}$

Prove a Theorem

V. Using a proof by induction, we have shown that:
...and inverting:

AVL Runtime Proof

An upper-bound on the height of an AVL tree is $\mathbf{O}(\lg (\mathbf{n}))$:

$$
\begin{aligned}
N(h):= & \text { Minimum \# of nodes in an AVL tree of height } h \\
N(h)= & 1+N(h-1)+N(h-2) \\
& >1+2^{(h-1) / 2+2(h-2) / 2} \\
& >2 \times 2^{(h-2) / 2}=2^{(h-2) / 2+1}=2^{h / 2}
\end{aligned}
$$

Theorem \#1:
Every AVL tree of height h has at least $2^{h / 2}$ nodes.

Summary of Balanced BST

AVL Trees

- Max height: 1.44 * $\lg (\mathrm{n})$
- Rotations:

$$
\begin{aligned}
& \text { Zero rotations on find } \\
& \text { One rotation on insert } \\
& \mathrm{O}(\mathrm{~h})==\mathrm{O}(\lg (\mathrm{n})) \text { rotations on remove }
\end{aligned}
$$

Red-Black Trees

- Max height: 2 * $\lg (n)$
- Constant number of rotations on insert (max 2), remove (max 3).

Summary of Balanced BST

Pros:

- Running Time:
- Improvement Over:
- Great for specific applications:

Summary of Balanced BST

Cons:

- Running Time:
- In-memory Requirement:

Next Week: Considering hardware limitations

Can we always fit our data in main memory?

Where else can we keep our data?

Does this match our assumption that all memory lookups are $\mathrm{O}(1)$?

