
Department of Computer Science

Data Structures
AVL Analysis

September 27, 2023 CS 225
Brad Solomon & G Carl Evans

Learning Objectives

Prove that the AVL Tree speeds up all operations

Review AVL trees

AVL Tree Rotations
A

B

C

B

C

A

All rotations are O(1)

All rotations reduce
subtree height by one

AVL Tree Analysis

For an AVL tree of height h:

Find runs in: __________.

Insert runs in: __________.

Remove runs in: __________.

Claim: The height of the AVL tree with n nodes is: __________.

AVL Tree Analysis
Definition of big-O:

…or, with pictures:

n, number of nodes

h,
 h

ei
gh

t
 is iff s.t. f(n) O(g(n)) ∃c, k f(n) ≤ cg(n) ∀n > k

n, number of nodes

h,
 h

ei
gh

t c * g(n)

g(n)

f (n)
k

The height of the tree, f(n), will always be less than
c × g(n) for all values where n > k.

AVL Tree Analysis

AVL Tree Analysis

n, number of nodes

h,
 h

ei
gh

t

n,
 n

um
be

r o
f n

od
es

h, height

c * g(n)

g(n)

f (n)
k

The number of nodes in the tree, f-1(h), will always
be greater than c × g-1(h) for all values where n > k.

g−1(h) c * g−1(h)

f −1(h)

 = “Tree height given nodes”f(n) = “Nodes in tree given height”f −1(h)

Plan of Action

 = minimum number of nodes in an AVL tree of height N(h) h

Since our goal is to find the lower bound on n given h, we
can begin by defining a function given h which describes the
smallest number of nodes in an AVL tree of height h:

Simplify the Recurrence

N(h) = 1 + N(h − 1) + N(h − 2)

N(h) ≥ N(h) − 1

State a Theorem

An AVL tree of height ____ has at least ____ nodes.

Theorem: An AVL tree of height h has at least __________.

Proof by Induction:

I. Consider an AVL tree and let h denote its height.

II. Base Case: ______________

Prove a Theorem

An AVL tree of height ____ has at least ____ nodes.

III. Base Case: ______________

Prove a Theorem
IV. Induction Case: ______________

then we must show for height that h N(h) ≥ 2h/2

If for all heights , i < h N(i) ≥ 2i/2

Prove a Theorem
V. Using a proof by induction, we have shown that:

…and inverting:

AVL Runtime Proof
An upper-bound on the height of an AVL tree is O(lg(n)):

 N(h) := Minimum # of nodes in an AVL tree of height h
 N(h) = 1 + N(h-1) + N(h-2)

 > 1 + 2h-1/2 + 2h-2/2

 > 2 × 2h-2/2 = 2h-2/2+1 = 2h/2

 Theorem #1:

 Every AVL tree of height h has at least 2h/2 nodes.

AVL Runtime Proof
An upper-bound on the height of an AVL tree is O(lg(n)):

 # of nodes (n) ≥ N(h) > 2h/2

 n > 2h/2
 lg(n) > h/2

 2 × lg(n) > h

 h < 2 × lg(n) , for h ≥ 1

Proved: The maximum number of nodes in an AVL tree of
height h is less than 2 × lg(n).

Summary of Balanced BST
AVL Trees

- Max height: 1.44 * lg(n)

- Rotations:

Summary of Balanced BST
AVL Trees

- Max height: 1.44 * lg(n)

- Rotations:
 Zero rotations on find
 One rotation on insert
 O(h) == O(lg(n)) rotations on remove

Red-Black Trees

- Max height: 2 * lg(n)

- Constant number of rotations on insert (max 2), remove
(max 3).

Summary of Balanced BST
Pros:

- Running Time:

- Improvement Over:

- Great for specific applications:

Summary of Balanced BST
Cons:

- Running Time:

- In-memory Requirement:

Range-based Searches
Q: Consider points in 1D: p = {p1, p2, …, pn}.
 …what points fall in [11, 42]?

Tree construction:

Range-based Searches
Balanced BSTs are useful structures for range-based and
nearest-neighbor searches.

Q: Consider points in 1D: p = {p1, p2, …, pn}.
 …what points fall in [11, 42]?

Ex: 3 6 11 33 41 44 55

Range-based Searches

6

3 11

33

44

41

Q: Consider points in 1D: p = {p1, p2, …, pn}.
 …what points fall in [11, 42]?

Red-Black Trees in C++

V & std::map<K, V>::operator[](const K &)

std::map<K, V> map;

C++ provides us a balanced BST as part of the standard library:

std::map<K, V>::erase(const K &)

Red-Black Trees in C++
iterator std::map<K, V>::lower_bound(const K &);
iterator std::map<K, V>::upper_bound(const K &);

Range-based Searches
Consider points in 2D: p = {p1, p2, …, pn}.

Q: What points are in the rectangle:
 [(x1, y1), (x2, y2)]?

Q: What is the nearest point to (x1, y1)?

p1

p2

p4

p3

p7

p5 p6

Range-based Searches
Consider points in 2D: p = {p1, p2, …, pn}.

Tree construction:

p1

p2

p4

p3

p7

p5 p6

