Data Structures
 Balanced Binary Search Trees

CS 225
Brad Solomon \& G Carl Evans

September 22, 2023

URBANA-CHAMPAIGN
Department of Computer Science

Office Hour Space Changes

Construction in the basement space began Thursday
Currently unclear how much space will remain
For now OH will remain online in the basement...
But keep an eye on your email / Discord!

Learning Objectives

$$
\text { Exm } 2-\text { next wook, }
$$

Briefly review BST review
Discuss the big picture problem with BSTs
Introduce the self-balancing BST

template<typename K , typename V >
void _remove (TreeNode *\& root, cons K \& key) \{

1) Find (σ) $\leftarrow * f$
2) 3 lases:
o - chill remove
1 - ch! id removal es LL remove
2 -child removal \rightarrow find FOP / IOS G Swap fop w/ root \rightarrow remove (Hey)

BST Remove
What will the tree structure look like if we remove node 16 using IOS?

BST Analysis

Inset Dears

Every operation on a BST depends on the height of the tree.
... how do we relate $O(h)$ to n, the size of our dataset?

$$
f(h) \leqslant n \subseteq g(h)
$$

BST Analysis
What is the max number of nodes in a tree of height h ?$h=0$

$$
h=1
$$

2

$$
3
$$

$$
h>\approx(\operatorname{los}(n))
$$

$$
\bigcap_{\leftarrow}^{2} 2^{h+1}-1
$$

BST Analysis
What is the $\mathbf{m i n}$ number of nodes in a tree of height h ?

$$
\begin{aligned}
& \begin{array}{ccccc}
0 & h=1 & Q_{0} & h=2 & Q_{0} \\
1 & 2 & i & 3 & 0
\end{array} \\
& \xrightarrow{n \geq h+1}
\end{aligned}
$$

BST Analysis

A BST of n nodes has a height between:
h
Lower-bound: $O(\log n)$

$$
h
$$

Upper-bound: $O(n)$

Height-Balanced Tree
What tree is better?

Height balance: $b=\operatorname{height}\left(T_{R}\right)-\operatorname{height}\left(T_{L}\right)$
A tree is "balanced" if: $\quad|b| \leq 1 \quad-1 \leq b \leq 1$

Option A: Correcting bad insert order

The height of a BST depends on the order in which the data was inserted
Insert Order: [1, 3, 2, 4, 5, 6, 7]

$$
b=3-0
$$

Insert Order: [4, 2, 3, 6, 7, 1, 5]

AVL-Tree: A self-balancing binary search tree

Rather than fixing an insertion order, just correct the tree as needed!

BST Rotations (The AVL Tree)
We can adjust the BST structure by performing rotations.
These rotations:

1. Modify qrongenet of auks while presenius \qquad BEt prapoty
2. Redure my tree height by one-trs if

BST Rotations (The AVL Tree)
We can adjust the BST structure by performing rotations.

1) Find in batare

Left Rotation

40 The inith ces

Right Rotation

Coding AVL Rotations

Two ways of visualizing:

1) Think of an arrow 'rotating' around the center

2) Recognize that there's a concrete order for rearrangements

Ex: Unbalanced at current (root) node and need to rotateLeft?
mates G tmp @ Cument root
Replace current (root) node with it's right child. (Blue)
Set the right child's left child to be the current node's right (σ and
Make the current node the right child's left child

AVL Rotation Practice

AVL Rotation Practice

Somethings not quite right...

