
Department of Computer Science

Data Structures
Trees

September 13, 2023
CS 225

Brad Solomon & G Carl Evans

Learning Objectives
Review trees and binary trees

Discuss the tree ADT

Explore tree implementation details

Practice tree theory with recursive definitions and proofs

Trees
A non-linear data structure defined recursively as a collection of nodes
where each node contains a value and zero or more connected nodes.

[In CS 225] a tree is also:

1) Acyclic — No path from node to itself

2) Rooted — A specific node is labeled root

1

2

3

4
5

6

Binary Tree

2

2S

C

5

A binary tree is a tree such that:T

1. T = Ø

2. T = (data, TL, TR)

A

XS

2

C

2 5 A

XS

2

C

2 5

S

2

C

2

5
A

X

Which of the following are binary trees?

A B C

Lets define additional terminology for different types of binary trees!

1.

2.

3.

Binary Tree

Binary Tree: full

A

XS

2

C

2

5

A tree F is full if and only if:

1.

2.

3.

A full tree is a binary tree where every node has either 0 or 2 children

Binary Tree: perfect

A

XS

2

C

2

5

A tree P is perfect if and only if:

1.

2.

Every internal node has 2 children and all leaves are at the same level.
A perfect tree is a binary tree where…

Binary Tree: complete

A tree C is complete if and only if:

All levels are completely filled except the last (which is pushed to left)

A complete tree is a B.T. where…

A

XS

2

C

2 5

Y Z

1.

2.

3.

Why do we care?

1. Terminology instantly defines a particular tree structure

2. Understanding how to think ‘recursively’ is very important.

Binary Tree

Binary Tree: Thinking with Types
Is every full tree complete?

Is every complete tree full?

Binary Tree: Practicing Proofs
Theorem: If there are n objects in our representation of a binary tree,
then there are ________ NULL pointers.

Binary Tree: Practicing Proofs
Theorem: If there are n objects in our representation of a binary tree,
then there are n+1 NULL pointers.

Base Case:

Binary Tree: Practicing Proofs
Theorem: If there are n objects in our representation of a binary tree,
then there are n+1 NULL pointers.

Induction Step:

Tree ADT

BinaryTree.h
#pragma once

template <class T>

class BinaryTree {

 public:

 /* ... */

 private: 

};

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

#pragma once

template <typename T>

class List {

 public:

 /* ... */

 private: 
 class ListNode { 
 T & data;

 
 ListNode * next;

 
 ListNode(T & data) : 
 data(data), next(NULL) { } 
 };

 ListNode *head_;  
 /* ... */ 
};

List.h
1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

#pragma once

template <typename T>

class BinaryTree {

 public:

 /* ... */

 private: 
 class TreeNode { 
 T & data;

 
 TreeNode * left;

 TreeNode * right;

 
 TreeNode(T & data) : 
 data(data), left(NULL),
right(NULL) { }

 
 };

 TreeNode *root_;  
 /* ... */ 
};

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

Tree.h

Visualizing trees

A

XS

2

C

2 5

Y

C

S X

A 2 2 5

Y

Ø Ø

Ø Ø Ø Ø ØØØ

Tree Traversal

*-

b

+

/

c

d ea

A traversal of a tree T is an ordered way of visiting every node once.

Traversals
template<class T>

void BinaryTree<T>::_____Order(TreeNode * root)

{

}

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

*-

b

+

/

c

d ea

Traversals
template<class T>

void BinaryTree<T>::_____Order(TreeNode * root)

{

 if (root) {

 ______________________;

 _____Order(root->left);

 ______________________;

 _____Order(root->right);

 ______________________;

 }

}

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

*-

b

+

/

c

d ea

Traversals
template<class T>

void BinaryTree<T>::_____Order(TreeNode * root)

{

 if (root) {

 ______________________;

 _____Order(root->left);

 ______________________;

 _____Order(root->right);

 ______________________;

 }

}

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

*-

b

+

/

c

d ea

Tree Traversals
112

4

1

5

6

8 103

7 9

Pre-order:

In-order:

Post-order:

Tree Traversals

Pre-order: Ideal for copying trees

Post-order: Ideal for deleting trees

X

AS

7

C

2

7

Traversal vs Search

Traversal

Search

D

CB

F

A

E

G

U

O M

C W

A

T

E S

IN

There are two main approaches to searching a binary tree:

Tree Search

Depth First Search

112

4

1

5

6

8 103

7 9

Explore as far along one path as possible before backtracking

Breadth First Search

112

4

1

5

6

8 103

7 9

Fully explore depth i before exploring depth i+1

Level-Order Traversal

*-

b

+

/

c

d ea

template<class T>

void BinaryTree<T>::lOrder(TreeNode * root)

{

Queue<TreeNode*> q;

q.enqueue(root);

while(q.empty() == False){

TreeNode* temp = q.head();

process(temp);

q.dequeue();

q.enqueue(temp->left);

q.enqueue(temp->right);

}

}

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

Tree Search
How can we improve our ability to search a binary tree?

What do we trade in order to do so?

