
Department of Computer Science

Data Structures
Queues and Iterators (and Trees)

September 11, 2023
CS 225

Brad Solomon & G Carl Evans

Announcements

Honors Class 199-225: First class today at CIF - 4039 @ 5 PM

Exam 1 starts today!

mp_stickers due date is Tuesday for everyone

mp_lists releases today (or tomorrow)

Learning Objectives

Review the queue data structure

Introduce and explore iterators

Introduce trees

Queue Data Structure
What do we need to track to maintain a queue with an array list?

Queue<int> q;

q.enqueue(3);

q.enqueue(8);

q.enqueue(4);

q.dequeue();

q.enqueue(7);

q.dequeue();

q.dequeue();

q.enqueue(2);

q.enqueue(1);

q.enqueue(3);

q.enqueue(5);

q.dequeue();

q.enqueue(9);

Size:

Front: Capacity: 6

Enqueue(D):

Dequeue(D):

Queue<char> q;

…

q.enqueue(d);

q.enqueue(a);

q.enqueue(y);

q.enqueue(i);

q.enqueue(s);

m o n

Queue Data Structure: Resizing

• [Order]:

• [Implementation]:

• [Runtime]:

Queue ADT

Iterators

8 2 5
Ø

We want to be able to loop through all elements for any underlying
implementation in a systematic way

Iterators
For a class to implement an iterator, it needs two functions:

Iterator begin()

Iterator end()

Iterators
The actual iterator is defined as a class inside the outer class:

Iterator& operator ++()

1. It must be of base class std::iterator

2. It must implement at least the following operations:

const T & operator *()

bool operator !=(const Iterator &)

Iterators

template <class T>

class List {

 class ListIterator : public
std::iterator<std::bidirectional_iterator_tag, T> {

 public:

 ListIterator& operator++();

 ListIterator& operator--()

 bool operator!=(const ListIterator& rhs);

 const T& operator*();

 };

 ListIterator begin() const;

 ListIterator end() const;

};

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

Future assignments will have you write custom iterators:

#include <list>

#include <string>

#include <iostream>

struct Animal {

 std::string name, food;

 bool big;

 Animal(std::string name = "blob", std::string food = "you", bool big = true) : 
 name(name), food(food), big(big) { /* nothing */ }  
};

int main() {

 Animal g("giraffe", "leaves", true), p("penguin", "fish", false), b("bear");

 std::vector<Animal> zoo;

 zoo.push_back(g);

 zoo.push_back(p); // std::vector’s insertAtEnd

 zoo.push_back(b);

 for (std::vector<Animal>::iterator it = zoo.begin(); it != zoo.end(); ++it) { 
 std::cout << (*it).name << " " << (*it).food << std::endl;

 }

 return 0;

}

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

stlList.cpp

std::vector<Animal> zoo;

/* Full text snippet */

 for (std::vector<Animal>::iterator it = zoo.begin(); it != zoo.end(); ++it) { 
 std::cout << (*it).name << " " << (*it).food << std::endl;

 }

/* Auto Snippet */

 for (auto it = zoo.begin(); it != zoo.end; ++it) { 
 std::cout << animal.name << " " << animal.food << std::endl;

 }

/* For Each Snippet */

 for (const Animal & animal : zoo) { 
 std::cout << animal.name << " " << animal.food << std::endl;

 }

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

Trees
A non-linear data structure defined recursively as a collection of nodes
where each node contains a value and zero or more connected nodes.

[In CS 225] a tree is also:

1)

2)

1

2

3

4
5

6

There are many types of trees

Tree Terminology

HB

D

C

E

F

G IA

Node: The vertex of a tree

Edge: The connecting path
between nodes

Path: A list of the edges (or
nodes) traversed to go from node
start to node end

J

Tree Terminology
Parent: The precursor node to
the current node is the ‘parent’

Child: The nodes linked by the
current node are it’s ‘children’

Neighbor: Parent or child

Degree: The number of children
for a given node

HB

D

C

E

F

G IA

J

Tree Terminology
Root: The start of a tree (the only
node with no parent).

Leaf: The terminating nodes of a
tree (have no children)

Internal: A node with at least one
child

HB

D

C

E

F

G IA

J

Tree Terminology

b

d

g

h

j

c

e

i

f

a

Height: the length of the longest path from the root to a leaf

a

c

a

b

d

c

f

a

What is the height of a tree with zero nodes?

Tree Height

height(T) =

Base Case:

Recursive Step:

Combining:

Binary Tree

A

XS

2

C

2

5

A binary tree is a tree such that:T

1.

2.

A

XS

2

C

2 5 A

XS

2

C

2 5

S

2

C

2

5
A

X

Which of the following are binary trees?

Lets define additional terminology for different types of binary trees!

1.

2.

3.

Binary Tree

Binary Tree: full

A

XS

2

C

2

5

A tree F is full if and only if:

1.

2.

3.

A full tree is a binary tree where every node has either 0 or 2 children

Binary Tree: perfect

A

XS

2

C

2

5

A tree P is perfect if and only if:

1.

2.

Every internal node has 2 children and all leaves are at the same level.
A perfect tree is a binary tree where…

Binary Tree: complete

A tree C is complete if and only if:

All levels are completely filled except the last (which is pushed to left)

A complete tree is a B.T. where…

A

XS

2

C

2 5

Y Z

1.

2.

3.

Why do we care?

1. Terminology instantly defines a particular tree structure

2. Understanding how to think ‘recursively’ is very important.

Binary Tree

Binary Tree: Thinking with Types
Is every full tree complete?

Is every complete tree full?

For next time: Tree ADT and BinaryTree implementation

