
Department of Computer Science

Data Structures
Array Lists

September 6, 2023 CS 225
Brad Solomon & G Carl Evans

Exam 1 Practice Exam Available
Practice exams give a rough idea of the format and style of questions

They are not exhaustive nor meaningfully repeatable

Lab and MP Feedback
Student feedback makes this class better

Weekly opportunities to provide anonymous feedback on Prairielearn

Entirely optional and very short!

Learning Objectives

Review array list implementation

Discuss array resizing

Consider extensions to lists

List Implementations
1. Linked List

2. Array List

C S 2 2 5
None

C S 2 2 5

head

#pragma once

template <typename T>
class List {
public:
 /* --- */
private:
 T *data_;

 T *size;

 T *capacity;

 /* --- */
};

List.h
1
2
3
4
5
…

25
26
27
28
29
30
…

Array List

C S 2 2 5

C S 2 2 5

C S 2 2 5

Index

Insert

Remove

Array List: _addspace()

N O S P A C E

Resize Strategy: +2 elements every time

Resize Strategy: +2 elements every time

Total copies for n inserts:
n2 + 2n

4

Resize Strategy: x2 elements every time

Resize Strategy: x2 elements every time
Total copies for n inserts: 2n − 1

Array Implementation
Singly Linked List Array

Look up arbitrary location

Insert after given element

Remove after given element

Insert at arbitrary location

Remove at arbitrary location

Search for an input value

Thinking critically about lists: tradeoffs
The implementations shown are foundational.

Can we make our lists better at some things? What is the cost?

Thinking critically about lists: tradeoffs

C S 2 7 7
None

head

Getting the size of a linked list has a Big O of:

Thinking critically about lists: tradeoffs

4 2 5 3 1
Ø

head_

1 2 3 4 5
Ø

head_

Thinking critically about lists: tradeoffs

2 7 5 9 7 14 1 0 8 3

0 1 2 3 5 7 7 8 9 14

Thinking critically about lists: tradeoffs

1 2 3 4 5
Ø

head_

Ø

Thinking critically about lists: tradeoffs
When we discuss data structures, consider how they can
be modified or improved!

Can we make a ‘list’ that is O(1) to insert and remove?
What is our tradeoff in doing so?

Stack Data Structure
A stack stores an ordered collection of objects (like a list)

However you can only do two operations:

Push: Put an item on top of the stack

Pop: Remove the top item of the stack (and return it)

push(3); push(5); pop(); push(2)

Top

Stack Data Structure
The call stack is a key concept for understanding recursion

template <typename T>
typename List<T>::ListNode *& List<T>::_index(unsigned index, ListNode *& root){

if (index == 0){ return root; }
if (root == nullptr){ return root; }

return _index(index - 1, root -> next);

}

63
64
65
66
67
68
69
70
71

A B C D Ø

Stack Data Structure
C++ has a built-in stack

#include <stack>
int main() {
stack<int> stack;
stack.push(3);
stack.push(8);
stack.push(4);
stack.pop();
stack.push(7);
stack.pop();
stack.pop();
stack.push(2);
stack.push(1);
stack.push(3);
stack.push(5);
stack.pop();
stack.push(9);

}

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20

Underlying implementation is vector or deque

• [Order]:

• [Implementation]:

• [Runtime]:

Stack ADT

Queue Data Structure
A queue stores an ordered collection of objects (like a list)

However you can only do two operations:

Enqueue: Put an item at the back of the queue

Dequeue: Remove and return the front item of the queue

enqueue(3); enqueue(5); dequeue(); enqueue(2)

Front

