
Department of Computer Science

Data Structures
Array Lists

September 1, 2023
CS 225

Brad Solomon & G Carl Evans



Learning Objectives

Review fundamentals of array list

Introduce array list implementations

Consider extensions to lists



List Implementations
1. Linked List

2. Array List

C S 2 2 5
None

C S 2 2 5

head



Array List



#pragma once


template <typename T>

class List {

public:

    /* --- */

private:

  T *data_;


  T *size;


  T *capacity;


    /* --- */

};

List.h
1

2

3

4

5

…


25

26

27
28

29

30

…



Array List: []

C S 2 2 5



Array List: insertAtFront(data)

C S 2 2 5



Array List: insert(data, index)

C S 2 2 5



Array List: remove(index)

C S 2 2 5



Array List: insert(data, index)

N O S P A C E



Resize Strategy: +2 elements every time



Resize Strategy: +2 elements every time



Resize Strategy: x2 elements every time



Resize Strategy: x2 elements every time



Array Implementation
Singly Linked List Array

Look up arbitrary location

Insert after given element

Remove after given element

Insert at arbitrary location

Remove at arbitrary location

Search for an input value



Thinking critically about lists: tradeoffs
The implementations shown are foundational.

Can we make our lists better at some things? What is the cost?



Thinking critically about lists: tradeoffs

C S 2 7 7
None

head

Getting the size of a linked list has a Big O of: 



Thinking critically about lists: tradeoffs

1 2 3 4 5
Ø

head_

4 2 5 3 1
Ø

head_



Thinking critically about lists: tradeoffs

2 7 5 9 7 14 1 0 8 3

0 1 2 3 5 7 7 8 9 14



Thinking critically about lists: tradeoffs

1 2 3 4 5
Ø

head_

Ø



Thinking critically about lists: tradeoffs
When we discuss data structures, consider how they can 
be modified or improved!

Next time: Can we make a ‘list’ that is O(1) to insert and 
remove? What is our tradeoff in doing so?


