Bit Vectors

$\mathrm{A}=1011001001, \mathrm{~B}=0110001111$
$A \cup B=$
$A \cap B=$
$A \gg 2=$
$B \ll 2=$

Cardinality

Cardinality is a measure of:

Cardinality Estimation

If I randomly sampled values from o - 999 (no repeats) and told you that the minimum value was 300 , what is your best estimate for the cardinality in the random set?

What if the minimum value was 20 ?

K-minimum Estimation

Will the k-th minimum give me a better, worse, or the same estimation accuracy as the minimum? Why?

K-minimum Estimation Equation

Given a range of values m and the k-th minimum value, what equation can be used to estimate the cardinality?

Can you modify the equation if we don't assume our range is $[0,1)$?

Set Review

$$
\begin{aligned}
& \mathbf{A}=\{\mathbf{1}, \mathbf{2}, \mathbf{3}, \mathbf{4}\}, \mathrm{B}=\{\mathbf{3}, \mathbf{4}, \mathbf{5}, \mathbf{6}, \mathbf{7}\} \\
& A \cup B=
\end{aligned}
$$

$A \cap B=$

Jaccard Similarity

What is the equation for the Jaccard similarity? What is the similarity for the above A and B?

MinHash Sketch

The MinHash sketch is an approximation strategy that reduces a dataset down to an ordered set of integers. What three things does the constructor take as input to do this?
1.
2.

3.

The MinHash sketch can be used to estimate two properties about a dataset. What are they?
1.
2.

MinHash Construction

Describe three ways to build a MinHash sketch. Why would you pick one over another?
1.

Estimating Similarity

Given the bottom 8 minimum hash values for A and B (below), estimate the similarity of the sets using an approximation of intersection and union.
$\mathrm{A}=\{3,7,8,11,15,17,22,23\}$
$B=\{2,3,6,7,9,11,17,23\}$

Repeat the same calculation, but this time using the inclusionexclusion principle (also known as 'double counting') to estimate the similarity without using the intersection.

