

#13: BST Remove

Removing an element
from a BST:

_remove(40)

_remove(25)

_remove(10)

_remove(13)

One-child Remove Two-child remove

BinaryTree.cpp
template <class K, class V>
void BST::_remove(TreeNode *& root, const K & key) {

}

BST Analysis:
Every operation we have studied on a BST depends on:

 …what is this in terms of the amount of data, n?

BST – Simple Proofs
Q: Given a height h, what is the maximum number of nodes (n) in a
valid BST of height h? Provide an outline of a proof.

Q: Given a height h, what is the minimum number of nodes (n) in a
valid BST of height h? Provide an outline of a proof.

Final BST Analysis
For every height-based algorithm on a BST:

 Lower Bound:

 Upper Bound:

 Why use a BST over a linked list?

Q: How does our data determine the height?

 1 3 2 4 5 7 6 vs. 4 2 3 6 7 1 5

Q: How many different ways are there to insert data into a BST?

Q: What is the average height of every arrangement?

 …what is the intuition here?

operation
BST

Avg. Case
BST

Worst Case
Sorted
Array

Sorted List

find

insert

delete

traverse

Height Balance on BST

What tree makes you happier?

We define the height balance (b) of a BST to be:

We define a BST tree T to be height balanced if:

