
CS 225
Data Structures

December 7 – The Story So Far…
G Carl Evans

https://course-assistants.cs.illinois.edu/

Hashing

Bloom Filters

Final Exam

Remaining Slides by
Minghao Liu

Graph vocabulary

A graph G is a tuple of a set of vertices V, and a set of edges E

G1

G2
G3

G = (V, E)

|V| = n //number of vertices
|E| = m //number of edges

Graph vocabulary

Graph vocabulary

• Incident edges → all edges that touch that node
§ 𝐼(𝑣) = { {𝑥, 𝑣} 𝑖𝑛 𝐸}

We identify an edge by stating two vertices it connects.

Incident edges for 𝑉 are (𝒗, 𝒔), (𝒗, 𝒕), (𝒗, 𝒘)

(q, r)

u

q

r

w
X

V

S
t u

q

r

w
X

V

S
t

Graph vocabulary
• Degree → the number of incident edges.

§ 𝐷𝑒𝑔𝑟𝑒𝑒(𝑣) = |𝐼(𝑣)|

Degree(v) = 3

u

q

r

w
X

V

S
t

Graph vocabulary
• Adjacent vertex → a vertex at the other end of the incident edge.

§ 𝐴 𝑣 = {𝑥: 𝑥, 𝑣 𝑖𝑛 𝐸}

𝑨 𝒗 = {𝒔, 𝒘, 𝒕}

u

q

r

w
X

V

S
t

Graph vocabulary
• Path → a sequence of vertices connected by edges.

Path from 𝑞 to 𝑡 is: {𝒒, 𝒓, 𝒘, 𝒗, 𝒕}

u

q

r

w
X

V

S
t

Graph vocabulary
• Cycle → a path with common beginning and end.

u

q

r

w
x

v

s
t

Graph vocabulary
• Simple Graph →A graph with no self loops and multi-edges

q

Self loop

v q

Multi-edges

Graph vocabulary
• Subgraph →any subset of vertices such that every edge in the

subgraph implies that both vertices that are incident to that edge are
part of that graph

Subgraph(G):
G’ = (V’, E’):

V’ ∈ V, E’ ∈ E, and
(u, v) ∈ E à u ∈ V’, v ∈ V’

ü G1 G2, G3 and G4 are subgraphs of G

G1
G2

G3

G
G4

ü G4 is also a subgraph of G2

Graph vocabulary
• Complete subgraph: every two distinct vertices are adjacent.

Graph vocabulary
• Connected subgraph: there is a path between every two vertices in the graph.

Graph vocabulary

G1
G2

G3

G

• Connected component: a connected subgraph where non-of the vertices are
connected to the rest of the graph.

G1, G2 and G3 are connected components.

Properties of Graph

Properties of Graph
Running times are often reported by n (the number of vertices) but often
depend on m (the number of edges).

• Minimum number of edges (m):
o Not Connected: m = 0
o Connected: m = n-1

u

V

tu

v

t

Example 1. Example 2.

Properties of Graph
• Maximum edges (m):
o Not simple: m = ∞, since we can have multiple edges

between vertices.
o Simple: !(!#$)

&

ut

Properties of Graph
Sum of all degrees of all vertices:

!
!"#

deg 𝑣 = 2 ∗ 𝑚

ut

!
!"#

deg 𝑣 = 2
!
!"#

deg 𝑣 = 6

u

V

t

Graph ADT

Functions:
- insertVertex(K key);
- insertEdge(Vertex v1, Vertex v2, K key);

- removeVertex(Vertex v);
- removeEdge(Vertex v1, Vertex v2);

- incidentEdges(Vertex v);
- areAdjacent(Vertex v1, Vertex v2);

Data:
- Vertices
- Edges
- Some data structure

maintaining the
structure between
vertices and edges.

X

V

W

Z

Y

b

e
d

f
g

h

Graph ADT

Graph Implementation: Edge List

v

u

w

a c
b

z
d

b

u

v

w

z

u v a

v w

u w c

w z d

Vertex Collection:
• Hash table: find, insert and remove

takes O(1) time

Edge Collection:
• Linked list

Graph Implementation: Edge List

v

u

w

a c
b

z
d

b

u

v

w

z

v u a

v w

u w c

w z d

Hash table

Given we use list for edges, what is the running time of
insertVertex and removeVertex?

List

• insertVertex take O(1) time, since inserting into
hash table takes O(1) time.

• removeVertex - means removing vertex from hash
table and removing corresponding edges from the
list. Running time will be: O(1) + O(m)=O(m)

b

u

v

w

z

u v a

v w

u w c

w z d

Graph Implementation: Edge List

v

u

w

a c
b

z
d

insertVertex(K key) – O(1)

removeVertex(Vertex v) – O(m)

areAdjacent(Vertex v1, Vertex v2) – O(m)

incidentEdges(Vertex v) – O(m)

insertEdge(Vertex v1, Vertex v2, K key) – O(1)

The relationship between number of nodes and the number of edges can be 𝑛); which
means that O(m) could in fact be 𝑂(𝑛))

b

u

v

w

z

u v a

v w

u w c

w z d

Graph Implementation: Adjacency Matrix

v

u

w

a c
b

z
d

u

v

w

z

u v w z

u - 1 1 0

v - 1 0

w - 1

z -

u v a

v w b

u w c

w z d

Space complexity 𝑶(𝒏𝟐)

Graph Implementation: Adjacency Matrix

v

u

w

a c
b

z
d

u

v

w

z

u v w z

u - 0

v - 0

w -

z -

u v a

v w b

u w c

w z d

insertVertex(Vertex v):
• Add to the hash table: O(1)
• Add to adj. matrix (resize once in 𝒏 element):

𝐎 𝐧 ∗ = 𝑶 𝒏𝟐

𝒏

Graph Implementation: Adjacency Matrix

v

u

w

a c
b

z
d

u

v

w

z

u v a

v w b

u w c

w z d

insertVertex(y):
• Add to the hash table: O(1)
• Add to adj. matrix (resize once in n element):

𝐎 𝐧 ∗ = 𝑶 𝒏𝟐

𝒏
u v w z y

u - 0

v - 0

w -

z -

y -

y

Graph Implementation: Adjacency Matrix

v

u

w

a c
b

z
d

u

v

w

z

u v w z

u - 0

v - 0

w -

z -

u v a

v w b

u w c

w z d

removeVertex(Vertex v) – O(n):
• Remove from the hash table: O(1)
• Removing edges:

• O(n) to check elements in row & column and if
pointer exist remove the edge (O(1) for each) –
O(n)

Graph Implementation: Adjacency Matrix

v

u

w

a c
b

z
d

u

v

w

z

v w z

v - 0

w -

z -

u v a

v w b

u w c

w z d

removeVertex(Vertex v) – O(n):
• Remove from the hash table: O(1)
• Removing edges:

• O(n) to check elements in row & column and if
pointer exist remove the edge (O(1) for each
remove) – O(n)

• Repair structure of the table - …

Graph Implementation: Adjacency Matrix

v

u

w

a c
b

z
d

u

v

w

z

z v w

z - 0

v -

w -

u v a

v w b

u w c

w z d

removeVertex(Vertex v) – O(n):
• Remove from the hash table: O(1)
• Removing edges:

• O(n) to check elements in row & column and if
pointer exist remove the edge (O(1) for each
remove) – O(n)

• Repair structure of the table - O(n)

Graph Implementation: Adjacency Matrix

v

u

w

a c
b

z
d

u

v

w

z

u v w z

u - 0

v - 0

w -

z -

u v a

v w b

u w c

w z d

incidentEdges(Vertex v) – O(n):
- Run through row/col → 𝟐𝒏 ≡ 𝑶(𝒏)

Graph Implementation: Adjacency Matrix

v

u

w

a c
b

z
d

u

v

w

z

u v w z

u - 0

v - 0

w -

z -

u v a

v w b

u w c

w z d

areAdjacent(Vertex v1, Vertex v2) – O(1):
- Check the specific element in the adj. matrix –
O(1)

Graph Implementation: Adjacency Matrix

v

u

w

a c
b

z
d

u

v

w

z

u v w z

u - 0

v - 0

w -

z -

u v a

v w b

u w c

w z d

insertEdge(Vertex v1, Vertex v2, K key) – O(1):
- Add edge to the edge list – O(1)
- update the pointer for the edge in adj. matrix –

O(1)

Graph Implementation: Adjacency Matrix

v

u

w

a c
b

z
d

u

v

w

z

u v w z

u -

v - 0

w -

z -

u v a

v w b

u w c

w z d

insertEdge(u, z, key) – O(1):
- Add edge to the edge list – O(1)
- update the pointer for the edge in adj. matrix –

O(1)

u z d

Adjacency Matrix

v

u

w

a c
b

z
d

u

v

w

z

u v w z

u Ø Ø

v Ø Ø

w Ø

z Ø

u v a

v w b

u w c

w z d

Key Ideas:
- Given a vertex, O(1) lookup in vertex

list
- Given a pair of vertices (an edge),

O(1) lookup in the matrix
- Undirected graphs can use an upper

triangular matrix

Adjacency List

v

u

w

a c
b

z
d

uu

v

w

z

v a

v w b

u w c

w z d

a c

a b

b c d

d

d=2

d=2

d=3

d=1

Key ideas:
-Given a vertex, O(1) lookup in
vertex list;
-Vertex list maintains a count of
incident edges, or deg(v);
-Vertex list contains a doubly-
linked adjacency list;

-O(1) access to the adjacent
vertex’s node in adjacency list
(via the edge list);

-Many operations run in
O(deg(v)), and deg(v) ≤ n-1, O(n).

Adjacency List

v

u

w

a c
b

z
d

u

v

w

z

u v a

v w b

u w c

w z d

a c

a b

b c d

d

d=2

d=2

d=3

d=1

insertVertex(K key) – O(1):

• Add to the hash table: O(1)

Adjacency List

v

u

w

a c
b

z
d

u

v

w

z

u v a

v w b

u w c

w z d

a c

a b

b c d

d

d=2

d=2

d=3

d=1

removeVertex(Vertex v) – O(deg(v)):
• Remove v from the hash table: O(1)
•Go though the incident list and remove all the edges:
§ 𝑣 has deg(𝑣) edges in the list;
§ Removing element from the adj. lists and edge list

takes 𝑂 1 – removing all the edges will take
deg(𝑣) ∗ 𝑂(1)

Adjacency List

v

u

w

a c
b

z
d

u

v

w

z

u v a

v w b

u w c

w z d

a c

a b

b c d

d

d=2

d=2

d=3

d=1

incidentEdges(Vertex v) – O(1):

• List of the incident edges already
exists for each vertex v and it has
deg(v) elements but we can return
a pointer to the front of the list.

Adjacency List

v

u

w

a c
b

z
d

u

v

w

z

u v a

v w b

u w c

w z d

a c

a b

b c d

d

d=2

d=2

d=3

d=1

areAdjacent(Vertex v1, Vertex v2) -
𝑂(min (deg (𝑣1), deg (𝑣2)))

To check adjacent nodes, we need to go through
incident edges of one of the vertices:
• Choose the vertex with smaller list:

𝑂(min (deg (𝑣1), deg (𝑣2)))

Adjacency List

v

u

w

a c
b

z
d

u

v

w

z

u v a

v w b

u w c

w z d

a c

a b

b c d

d

d=2

d=2

d=3

d=1

insertEdge(Vertex v1, Vertex v2, K key) - O(1)

• insert edge in edge list: O(1)
• Find v1 in hashtable and insert edge in v1’s

linked list: O(1)
• Find v2 in hashtable and insert edge v2’s

linked list: O(1)

u z e
e

e

Better running time: O(n) or O(m)?

a

e

b

f
j h

i

p

d c

There is no clear winner!

Expressed as O(f) Edge List Adjacency Matrix Adjacency List

Space n+m n2 n+m

insertVertex(v) 1 n 1

removeVertex(v) m n deg(v)

insertEdge(v, w, k) 1 1 1

removeEdge(v, w) 1 1 1

incidentEdges(v) m n deg(v)

areAdjacent(v, w) m 1 min(deg(v),
deg(w))

Expressed as O(f) Edge List Adjacency Matrix Adjacency List

Space n+m n2 n+m

insertVertex(v) 1 J n 1 J

removeVertex(v) m n deg(v) J

insertEdge(v, w, k) 1 J 1 J 1 J

removeEdge(v, w) 1 J 1 J 1 J

incidentEdges(v) m n deg(v) J

areAdjacent(v, w) m 1 J min(deg(v),
deg(w))

Sparse graphs

The graph is not connected →
𝑚 < 𝑛 ⇒ deg 𝑣 < 𝑛

Advantage to use: adjacency list

Use cases:

Dense graphs

The graph is almost fully connected →
𝑚 ~ 𝑛), degree v ~n

We can use either adjacency list or adjacency matrix.
It depends on the operations we need (areAdjacent or insertVertex).

Traversal:
Objective: Visit every vertex and every edge in the graph.

Purpose: Search for interesting sub-structures in the graph.

Tree traversal vs Graph traversal

• Ordered
• Obvious Start
• Notion of doneness

• Any order
• Arb. Starting point
• No notion of completeness

BFS
ü Breadth-first search (BFS) is an algorithm for traversing or searching tree

or graph data structures.

ü It starts from some arbitrary node of a graph and explores all the
neighbor nodes at the present depth prior to moving on to the nodes at
the next depth level.

Algorithm setup:
Label each edge:

• Discovery edge (bolded) or
• Cross edge (dashed)

Table of vertices with following features:
• Vertex name - key
• Boolean flag - visited
• Distance to the vertex
• Predecessor
• List of adjacent vertices

• Queue

key visited dist. pred. adj.
vertices

A C B D

B A E C

C A B D E F

D A C F H

E B C G

F C D G

G E F H

H D G

Ø Chose a starting point, add it to the queue, set its visited flag in the table, set distance
value to 0, and predecessor value to null.

Queue

Starting point - A key visited dist. pred. adj.
vertices

A ✓ 0 null C B D

B A E C

C A B D E F

D A C F H

E B C G

F C D G

G E F H

H D G
A

Queue

Starting point - A key visited dist. pred. adj.
vertices

A ✓ 0 null C B D

B A E C

C A B D E F

D A C F H

E B C G

F C D G

G E F H

H D G
A

Queue

Dequeue and loop over the adjacent vertices of the dequeued element.
Examine each adjacent vertex:
• If the vertex has not been visited, mark the edge to the vertex as discovery

edge; update it’s visited flag, distance, and predecessor, and add the vertex to
the queue.

• Otherwise if the edge is not explored yet just mark the edge as cross edge
and move on to the next vertex.

We will dequeue A and examine vertices C, B, and D.

Starting point - A key visited dist. pred. adj.
vertices

A ✓ 0 null C B D

B ✓ 1 A A E C

C ✓ 1 A A B D E F

D ✓ 1 A A C F H

E B C G

F C D G

G E F H

H D G
A C B D

Queue

Starting point - A key visited dist. pred. adj.
vertices

A ✓ 0 null C B D

B ✓ 1 A A E C

C ✓ 1 A A B D E F

D ✓ 1 A A C F H

E ✓ 2 C B C G

F ✓ 2 C C D G

G E F H

H D G
A C B D E F

Queue

Starting point - A key visited dist. pred. adj.
vertices

A ✓ 0 null C B D

B ✓ 1 A A E C

C ✓ 1 A A B D E F

D ✓ 1 A A C F H

E ✓ 2 C B C G

F ✓ 2 C C D G

G E F H

H D G
A C B D E F

Queue

Starting point - A key visited dist. pred. adj.
vertices

A ✓ 0 null C B D

B ✓ 1 A A E C

C ✓ 1 A A B D E F

D ✓ 1 A A C F H

E ✓ 2 C B C G

F ✓ 2 C C D G

G E F H

H ✓ 2 D D G
A C B D E F H

Queue

Starting point - A key visited dist. pred. adj.
vertices

A ✓ 0 null C B D

B ✓ 1 A A E C

C ✓ 1 A A B D E F

D ✓ 1 A A C F H

E ✓ 2 C B C G

F ✓ 2 C C D G

G ✓ 3 E E F H

H ✓ 2 D D G
A C B D E F H G

Queue

Starting point - A key visited dist. pred. adj.
vertices

A ✓ 0 null C B D

B ✓ 1 A A E C

C ✓ 1 A A B D E F

D ✓ 1 A A C F H

E ✓ 2 C B C G

F ✓ 2 C C D G

G ✓ 3 E E F H

H ✓ 2 D D G
A C B D E F H G

Queue

Starting point - A key visited dist. pred. adj.
vertices

A ✓ 0 null C B D

B ✓ 1 A A E C

C ✓ 1 A A B D E F

D ✓ 1 A A C F H

E ✓ 2 C B C G

F ✓ 2 C C D G

G ✓ 3 E E F H

H ✓ 2 D D G
A C B D E F H G

Queue

Starting point - A key visited dist. pred. adj.
vertices

A ✓ 0 null C B D

B ✓ 1 A A E C

C ✓ 1 A A B D E F

D ✓ 1 A A C F H

E ✓ 2 C B C G

F ✓ 2 C C D G

G ✓ 3 E E F H

H ✓ 2 D D G
A C B D E F H G

Queue

BFS(G):
Input: Graph, G
Output: A labeling of the edges on

G as discovery and cross edges

foreach (Vertex v : G.vertices()):
setLabel(v, UNEXPLORED)

foreach (Edge e : G.edges()):
setLabel(e, UNEXPLORED)

foreach (Vertex v : G.vertices()):
if getLabel(v) == UNEXPLORED:

BFS(G, v)

BFS(G, v):
Queue q
setLabel(v, VISITED)
q.enqueue(v)

while !q.empty():
v = q.dequeue()
foreach (Vertex w : G.adjacent(v)):
if getLabel(w) == UNEXPLORED:

setLabel(v, w, DISCOVERY)
setLabel(w, VISITED)
q.enqueue(w)

elseif getLabel(v, w) == UNEXPLORED:
setLabel(v, w, CROSS)

Traversal: BFS

BFS(G):
Input: Graph, G
Output: A labeling of the edges on

G as discovery and cross edges

foreach (Vertex v : G.vertices()):
setLabel(v, UNEXPLORED)

foreach (Edge e : G.edges()):
setLabel(e, UNEXPLORED)

foreach (Vertex v : G.vertices()):
if getLabel(v) == UNEXPLORED:

BFS(G, v)

BFS(G, v):
Queue q
setLabel(v, VISITED)
q.enqueue(v)

while !q.empty():
v = q.dequeue()
foreach (Vertex w : G.adjacent(v)):
if getLabel(w) == UNEXPLORED:

setLabel(v, w, DISCOVERY)
setLabel(w, VISITED)
q.enqueue(w)

elseif getLabel(v, w) == UNEXPLORED:
setLabel(v, w, CROSS)

Traversal: BFS

Our implementation handles disjoint graphs.
How do we use this to count components?
Add component counter before BFS call;

BFS(G):
Input: Graph, G
Output: A labeling of the edges on

G as discovery and cross edges

foreach (Vertex v : G.vertices()):
setLabel(v, UNEXPLORED)

foreach (Edge e : G.edges()):
setLabel(e, UNEXPLORED)

foreach (Vertex v : G.vertices()):
if getLabel(v) == UNEXPLORED:

comps++;
BFS(G, v)

BFS(G, v):
Queue q
setLabel(v, VISITED)
q.enqueue(v)

while !q.empty():
v = q.dequeue()
foreach (Vertex w : G.adjacent(v)):
if getLabel(w) == UNEXPLORED:

setLabel(v, w, DISCOVERY)
setLabel(w, VISITED)
q.enqueue(w)

elseif getLabel(v, w) == UNEXPLORED:
setLabel(v, w, CROSS)

Traversal: BFS

Our implementation handles disjoint graphs.
How do we use this to count components?
Add component counter before BFS call;

BFS Analysis
Q: Does our implementation detect a cycle?

• How do we update our code to detect a cycle?
Yes. Existence of at least one cross edge guarantees cycle.

BFS(G, v):
Queue q
setLabel(v, VISITED)
q.enqueue(v)

while !q.empty():
v = q.dequeue()
foreach (Vertex w : G.adjacent(v)):
if getLabel(w) == UNEXPLORED:

setLabel(v, w, DISCOVERY)
setLabel(w, VISITED)
q.enqueue(w)

elseif getLabel(v, w) == UNEXPLORED:
setLabel(v, w, CROSS)

14
15
16
17
18
19
20
21
22
23
24
25
26
27

This is optimal running time because we know we have to visit
every edge and vertex, therefore we cannot do better than O(n+m).

Running time of BFS - O(n+m)
BFS(G):
Input: Graph, G
Output: A labeling of the edges on

G as discovery and cross edges

foreach (Vertex v : G.vertices()):
setLabel(v, UNEXPLORED)

foreach (Edge e : G.edges()):
setLabel(e, UNEXPLORED)

foreach (Vertex v : G.vertices()):
if getLabel(v) == UNEXPLORED:

BFS(G, v)

BFS(G, v):
Queue q
setLabel(v, VISITED)
q.enqueue(v)

while !q.empty():
v = q.dequeue()
foreach (Vertex w : G.adjacent(v)):
if getLabel(w) == UNEXPLORED:

setLabel(v, w, DISCOVERY)
setLabel(w, VISITED)
q.enqueue(w)

elseif getLabel(v, w) == UNEXPLORED:
setLabel(v, w, CROSS)

14
15
16
17
18
19
20
21
22
23
24
25
26
27

BFS Observations
Q: What is a shortest path from A to H?
Path: A,D,H
Q: What is a shortest path from E to H?
No information about this.
BFS finds shortest path only from starting
vertex (in graphs without weights) ;
Q: What structure is made from
discovery edges?
We get new graph structure: spanning
tree!

A

C D

E

B

F

G H

d p v Adjacent

0 A A C B D

1 A B A C E

1 A C B A D E F

1 A D A C F H

2 C E B C G

2 C F C D G

3 E G E F H

2 D H D G

BFS Observations
Obs. 1: Traversals can be used to count components.

Obs. 2: Traversals can be used to detect cycles.

Obs. 3: In BFS, d provides the shortest distance to
every vertex.

Obs. 4: In BFS, the endpoints of a cross edge never
differ in distance, d, by more than 1:

|d(u) - d(v)| = 1

DFS – Depth First Search

üDepth-first search (DFS) is an algorithm for traversing or searching tree or graph data

structures.

ü The algorithm starts from some arbitrary node and explores as far as possible along

each branch before backtracking.

Algorithm setup:
Everything is the same as BFS except for:

q We will use stack instead of a queue.

q We will label cross edges as back edges.

Algorithm setup:
Label each edge:

• Discovery edge (bolded) or
• back edge (dashed)

Table of vertices with following features:
• Vertex name - key
• Boolean flag - visited
• Distance it took to get to the vertex
• Predecessor
• List of adjacent vertices

• Stack (use recursion to replace)

DFS(G):
Input: Graph, G
Output: A labeling of the edges on

G as discovery and back edges

foreach (Vertex v : G.vertices()):
setLabel(v, UNEXPLORED)

foreach (Edge e : G.edges()):
setLabel(e, UNEXPLORED)

foreach (Vertex v : G.vertices()):
if getLabel(v) == UNEXPLORED:

DFS(G, v)

1
2
3
4
5
6
7
8
9
10
11
12

DFS(G, v):
Queue q
setLabel(v, VISITED)
q.enqueue(v)

while !q.empty():
v = q.dequeue()
foreach (Vertex w : G.adjacent(v)):
if getLabel(w) == UNEXPLORED:

setLabel(v, w, DISCOVERY)
setLabel(w, VISITED)
DFS(G, w)

elseif getLabel(v, w) == UNEXPLORED:
setLabel(v, w, BACK)

14
15
16
17
18
19
20
21
22
23
24
25
26
27

A

C

D

E

B
F

G

H

J
K

We visit D first and we are immediately
recusing from D.

A

C

D

E

B
F

G

H

J
K

Order of vertices does not matter.

DFS with recursion:

Next we visit C first and we are
immediately recusing from C.

A

C

D

E

B
F

G

H

J
K

A

C

D

E

B
F

G

H

J
K

Next we visit B first.
We visited all neighbors for B, so we will
go back to C.

DFS with recursion:

Next we visit G first and we are
immediately recusing from G.

A

C

D

E

B
F

G

H

J
K

Next we visit F first.
Since D is already visited (F,D) is labeled
as back edge.
F is done and we go back to G.

A

C

D

E

B
F

G

H

J
K

DFS with recursion:

Next we visit H and we label another
back edge (H,D). H will be done, we will
go back to G.

Next we visit J.

A

C

D

E

B
F

G

H

J
K

A

C

D

E

B
F

G

H

J
K

DFS with recursion:

Next we visit K.
(A,K) labeled as back edge.

Next we visit E.
(E,G) becomes back edge and E will be
done.

A

C

D

E

B
F

G

H

J
K

A

C

D

E

B
F

G

H

J
K

* You should also keep track of distance and parents.

DFS with recursion:

DFS with recursion:

A

C

D

E

B
F

G

H

J
K

• Back edge is getting us closer to starting vertex;
• Existence of back edges means there is a cycle;
• Discovery edges gives us spanning tree;
• DFS can gives us component count;

DFS(G):
Input: Graph, G
Output: A labeling of the edges on

G as discovery and back edges

foreach (Vertex v : G.vertices()):
setLabel(v, UNEXPLORED)

foreach (Edge e : G.edges()):
setLabel(e, UNEXPLORED)

foreach (Vertex v : G.vertices()):
if getLabel(v) == UNEXPLORED:

DFS(G, v)

1
2
3
4
5
6
7
8
9
10
11
12

DFS(G, v):
Queue q
setLabel(v, VISITED)
q.enqueue(v)

while !q.empty():
v = q.dequeue()
foreach (Vertex w : G.adjacent(v)):
if getLabel(w) == UNEXPLORED:

setLabel(v, w, DISCOVERY)
setLabel(w, VISITED)
DFS(G, w)

elseif getLabel(v, w) == UNEXPLORED:
setLabel(v, w, BACK)

14
15
16
17
18
19
20
21
22
23
24
25
26
27

Running time of DFS is O(n+m)

Minimum Spanning Tree Algorithms
Input: Connected, undirected graph G with edge
weights (unconstrained, but must be additive)

Output: A graph G’ with the following properties:
•G’ is a spanning graph of G
•G’ is a tree (connected, acyclic)
•G’ has a minimal total weight among all spanning

trees A

C D

E

B

F

8 42
7 1

2 3 9 5

Minimum Spanning Tree Algorithms

Graph can have multiple spanning trees ,but there

will always be at least one minimum spanning tree.

A

C D

E

B

F

8 4
2

7 1

2 3 9 5

Kruskal’s Algorithm
(A, D)

(E, H)

(F, G)

(A, B)

(B, D)

(G, E)

(E, C)

(C, H)

(E, F)

(F, C)

(D, E)

(B, C)

(C, D)

(A, F)

(D, F)

(G, H)

Sorted list of edges:

Algorithm setup:
• Maintain a list of edges sorted by weight in increasing

order → min heap.
• Initialize a disjoint set (up tree) for each vertex.

Kruskal’s Algorithm

• Remove minimum from the heap;
• Check that the two vertices, that form the removed edge,

are in different disjoint sets.
• If they are, add the edge to the spanning tree and union

the two sets.
• Otherwise, ignore that edge and move on.

Kruskal’s Algorithm

• remove edge (A, D) from the heap.
• Vertex A and vertex D are in different sets. Therefore, we can add edge

(A, D) and union sets {A} and {D}.

Kruskal’s Algorithm

Kruskal’s Algorithm

Kruskal’s Algorithm

Kruskal’s Algorithm

Next:
We skip (B,D) since they are in the same set.

Kruskal’s Algorithm

Next:
We skip (G,H) since they are in the same set.

Kruskal’s Algorithm

Next:
We skip (C, H), (E,F), (F,C) since they are in the same set.

Kruskal’s Algorithm

We pop the rest of the edges and ignore them all because now all
vertices are in one set.

Kruskal’s Algorithm

We have created an MST → total sum of all edges is the smallest possible on this
graph.

Kruskal’s Algorithm
KruskalMST(G):

DisjointSets forest
foreach (Vertex v : G):

forest.makeSet(v)

PriorityQueue Q // min edge weight
foreach (Edge e : G):

Q.insert(e)

Graph T = (V, {})

while |T.edges()| < n-1:
Vertex (u, v) = Q.removeMin()
if forest.find(u) != forest.find(v):

T.addEdge(u, v)
forest.union(forest.find(u),

forest.find(v))

return T

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19

Stopping condition:
|T.edges()| < n-1

Worst case:
We visit every edge

Kruskal’s Algorithm - total running time:

Priority Queue:
Total Running Time

Heap 𝑂 𝑛 + 𝑚 + 𝑂 𝑚 lg 𝑛 = 𝑂(𝑛 + 𝑚𝑙𝑔𝑛)
Sorted Array 𝑂 𝑛 + 𝑚 lg 𝑛 + 𝑂 𝑚 = 𝑂(𝑛 + 𝑚𝑙𝑔𝑛)

𝑂(𝑛 + 𝑚) for set up with heap

𝑂(𝑛 + 𝑚 lg 𝑛) for set up with sorted array.

Partition Property
Consider an arbitrary partition of the vertices on G
into two subsets U and V.

A

C

D

E

B

F

8 4
2

7 12

39

5

U V

Let e be an edge of
minimum weight across
the partition.

Then e is part of some
minimum spanning tree.

e

Partition Property
The partition property suggests an algorithm:

A
C

D E

B

F G

H16

5

5

2
15

16

10

11

8

912

4

17
13

9

Prim’s Algorithm PrimMST(G, s):
Input: G, Graph;

s, vertex in G, starting vertex
Output: T, a minimum spanning tree (MST) of G

foreach (Vertex v : G):
d[v] = +inf
p[v] = NULL

d[s] = 0

PriorityQueue Q // min distance, defined by d[v]
Q.buildHeap(G.vertices())
Graph T // "labeled set"

repeat n times:
Vertex m = Q.removeMin()
T.add(m)
foreach (Vertex v : neighbors of m not in T):
if cost(v, m) < d[v]:
d[v] = cost(v, m)
p[v] = m

return T

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23

2

5

15

16

7

12

9

13

118

Prim’s Algorithm PrimMST(G, s):
Input: G, Graph;

s, vertex in G, starting vertex
Output: T, a minimum spanning tree (MST) of G

foreach (Vertex v : G):
d[v] = +inf
p[v] = NULL

d[s] = 0

PriorityQueue Q // min distance, defined by d[v]
Q.buildHeap(G.vertices())
Graph T // "labeled set"

repeat n times:
Vertex m = Q.removeMin()
T.add(m)
foreach (Vertex v : neighbors of m not in T):
if cost(v, m) < d[v]:
d[v] = cost(v, m)
p[v] = m

return T

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23

d = ∞
p = null

d = ∞
p = null

d = ∞
p = null

d = ∞
p = null

d = ∞
p = null

d = ∞
p = null

A ∞

B ∞

C ∞

D ∞

E ∞

F ∞

Prim’s Algorithm
Algorithm logic:
Choose an arbitrary starting point and set its distance to 0.
Pop the starting vertex from the heap and update the distance/predecessor of
adjacent vertices.

d = ∞
p = null

d = ∞
p = null

d = ∞
p = null

d = ∞
p = null

d = ∞
p = null

d = ∞
p = null

Prim’s Algorithm
We pop A and update adjacent vertices B, D, and F.
Next: remove minimum element from the heap and add the edge to the MST

d = ∞
p = null

d = ∞
p = null

d = ∞
p = null

d = ∞
p = null

d = ∞
p = null

d = ∞
p = null

Prim’s Algorithm
Next, we pop a vertex with the smallest distance and update adjacent vertices.
However, we update vertices only if the distance is smaller than the current.

d = ∞
p = null

d = ∞
p = null

d = ∞
p = null

d = ∞
p = null

d = ∞
p = null

d = ∞
p = null

Prim’s Algorithm
Next: remove minimum element from the heap and add the edge to the MST
We will add edge (D, B)

d = ∞
p = null

d = ∞
p = null

d = ∞
p = null

d = ∞
p = null

d = ∞
p = null

d = ∞
p = null

Prim’s Algorithm
Next: pop a vertex with the smallest distance, update adjacent vertices if
needed, and add the edge with the smallest distance.
These steps are repeated until the heap is empty .

d = ∞
p = null

d = ∞
p = null

d = ∞
p = null

d = ∞
p = null

d = ∞
p = null

d = ∞
p = null

Prim’s Algorithm
we pop D and we update all its adjacent vertices F, E, and C

d = ∞
p = null

d = ∞
p = null

d = ∞
p = null

d = ∞
p = null

d = ∞
p = null

d = ∞
p = null

Prim’s Algorithm
The next vertex with smallest distance is E. We add the edge from D to E.

d = ∞
p = null

d = ∞
p = null

d = ∞
p = null

d = ∞
p = null

d = ∞
p = null

d = ∞
p = null

Prim’s Algorithm
pop E and we only update C, because F’s current distance is smaller than the
one from E to F.

d = ∞
p = null

d = ∞
p = null

d = ∞
p = null

d = ∞
p = null

d = ∞
p = null

d = ∞
p = null

Prim’s Algorithm
• The shortest distance is from D to F, so we add that edge to the graph.
• We pop 9 and we don’t have anything to update because all neighboring

edges have been added to the graph.
•

d = ∞
p = null

d = ∞
p = null

d = ∞
p = null

d = ∞
p = null

d = ∞
p = null

d = ∞
p = null

Prim’s Algorithm
• Finally, we pop C and add an edge from E to C. After this step the heap is

empty and we are done.

d = ∞
p = null

d = ∞
p = null

d = ∞
p = null

d = ∞
p = null

d = ∞
p = null

d = ∞
p = null

• Case 1: the data is sparse → use (heap + adj list) and the running time will
be O(𝑛𝑙𝑜𝑔(𝑛)) (𝑛~𝑚)

• Case 2: the data is dense → use (unsorted array + adj matrix/list) and the
running time will be O(𝑛$). 𝑚~𝑛$

MST Algorithm Runtime:
•Kruskal’s Algorithm:

O(n + m lg(n))

•What must be true about the connectivity of a graph
when running an MST algorithm?
Graph is a connected graph.

• How does n and m relate?
𝒎 ≥ 𝒏 − 𝟏 → 𝑶 𝒎 = 𝑶(𝒏)

Running time: 𝑚 lg 𝑛

•Prim’s Algorithm:
O(n lg(n) + m lg(n))

Fibonacci heap
Decrease key operation in Fibonacci heap takes O(1)* time.

If we use Fibonacci heap for our algorithm, updated value will take O(1) time, since
we are always decreasing key.

Adj. List with Fibonacci heap: 𝑂 𝑛 lg 𝑛 + 𝑚 → 𝑓𝑎𝑠𝑡𝑒𝑠𝑡 𝑟𝑢𝑛𝑛𝑖𝑛𝑔 𝑡𝑖𝑚𝑒 𝑓𝑜𝑟 𝑀𝑆𝑇

Dijkstra’s Algorithm

Dijkstra's algorithm is an algorithm for finding the shortest paths between
starting node to every other nodes in a graph

Dijkstra’s Algorithm
DijkstraSSSP(G, s):
foreach (Vertex v : G):
d[v] = +inf
p[v] = NULL

d[s] = 0

PriorityQueue Q // min distance, defined by d[v]
Q.buildHeap(G.vertices())
Graph T // "labeled set"

repeat n times:
Vertex m = Q.removeMin()
T.add(u)
foreach (Vertex v : neighbors of u not in T):
if d[m] + cost(m, v) < d[v]:
d[v] = d[m] + cost(m, v)
p[v] = m

6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21

7

A
C

D

E

B

F G

H7

5
4

10

5

3

6

25

4

3

Very similar to Prim’s Algorithm – only difference is when we update the
distance, we use the path length instead of a single edge weight

Set up:

Choose an arbitrary starting point and set its distance to 0.

Starting point A.

We pop A and update adjacent vertices B and F. Notice: edges are directed

add an edge to the node with the smallest distance

Pop a vertex with the smallest distance and update adjacent vertices only if the
distance from the start is smaller than the current d.

Add an edge to the node with the smallest path

Pop and update if needed:

Add the edge:

Pop and update if needed:

Add the edge:

Pop and update (nothing was updated)

Add the edge, pop D and update (nothing was updated)

Add the edge, pop C and update

Add the edge from C to H and pop H. heap becomes empty

The shortest path from A to H is 21.
The time to find this information is O(1).

What is the path from A to H?
Start at H and trace back the
predecessor nodes → A-B-C-H

If there is no path to a particular vertex, we will have infinity as distance.

The shortest path will be A-C-D-E-F-G-H-B instead of A-B because
the first path has length 7 and the second path has length 10.

When there is a tie in path lengths, it is up to us to decide how we want to handle
that.

Can Dijkstra’s algorithm handle undirected graphs?
Yes, it can. It will not go back or in loop because that will increase the path length.

Can Dijkstra’s algorithm handle graph with negative cycles?
No, because negative weight cycle doesn’t have defined shortest path. We can
always find a shorter path which leads to negative infinity.

Dijkstra’s algorithm for graphs with negative edges but with no negative cycles
will not produce the shortest path.
//We cant just add constant to every edge weights to make it 0!

Dijkstra’s algorithm for graphs with negative edges (does not produce shortest path)

Remember, we built Dijkstra’s algorithm on top of Prim’s algorithm.

We only added two lines of code which take O(1).

Therefore, Dijkstra’s running time is the same as Prim’s.

Running time of Dijkstra’s algorithm

Basic data structures Fibonacci Heap

O(mlg(n)) O(nlg(n)+m)

Floyd-Warshall Algorithm
Floyd-Warshall’s Algorithm is an alterative to Dijkstra
in the presence of negative-weight edges (not
negative weight cycles).

FloydWarshall(G):
Let d be a adj. matrix initialized to +inf
foreach (Vertex v : G):
d[v][v] = 0

foreach (Edge (u, v) : G):
d[u][v] = cost(u, v)

foreach (Vertex u : G):
foreach (Vertex v : G):
foreach (Vertex w : G):
if d[u, v] > d[u, w] + d[w, v]:
d[u, v] = d[u, w] + d[w, v]

6
7
8
9
10
11
12
13
14
15
16

B

A
C

D

3
-1

2

4

-2

Algorithm setup:
• Maintain a table (matrix) that has the shortest known paths

between vertices.
• Initialize the table with three possible values:

§ self edges to 0
§ edges by edge weights
§ unknown paths to infinity

Floyd-Warshall Algorithm
A B C D

A 0 -1 ∞ ∞

B ∞ 0 4 3

C ∞ ∞ 0 -2

D 2 ∞ ∞ 0

12
13
14
15
16

foreach (Vertex u : G):
foreach (Vertex v : G):
foreach (Vertex k : G):
if d[u, v] > d[u, k] + d[k, v]:
d[u, v] = d[u, w] + d[w, v]

A
C

D

B

3
-1

2

4

-2Can we add a vertex in between to vertices to make
the distance shorter.

B C B A CVS

Floyd-Warshall Algorithm
A B C D

A 0 -1 ∞ ∞

B ∞ 0 4 3

C ∞ ∞ 0 -2

D 2 ∞ ∞ 0

A
C

D

B

3
-1

2

4

-2

Let us consider k=A:

B C

B D

4

3

foreach (Vertex u : G):
foreach (Vertex v : G):
foreach (Vertex k : G):
if d[u, v] > d[u, k] + d[k, v]:
d[u, v] = d[u, w] + d[w, v]

12
13
14
15
16

B CAvs. +∞

B DA +∞vs.

C B

C D

+∞

-2

C BAvs. +∞

C DA +∞vs.

D B

D C

+∞ D BAvs.

D CAvs.+∞

2+(-1) = 1
+∞

Floyd-Warshall Algorithm
A B C D

A 0 -1 ∞ ∞

B ∞ 0 4 3

C ∞ ∞ 0 -2

D 2 1 ∞ 0

A
C

D

B

3
-1

2

4

-2

foreach (Vertex u : G):
foreach (Vertex v : G):
foreach (Vertex k : G):
if d[u, v] > d[u, k] + d[k, v]:
d[u, v] = d[u, w] + d[w, v]

12
13
14
15
16

1B C

B D

4

3

B CAvs. +∞

B DA +∞vs.

C B

C D

+∞

-2

C BAvs. +∞

C DA +∞vs.

D B

D C

+∞ D BAvs.

D CAvs.+∞

2+(-1) = 1
+∞

Let us consider k=A:

Floyd-Warshall Algorithm
A B C D

A 0 -1 ∞ ∞

B ∞ 0 4 3

C ∞ ∞ 0 -2

D 2 1 ∞ 0

A
C

D

B

3
-1

2

4

-2

Let us consider k=B:

A C

A D

foreach (Vertex u : G):
foreach (Vertex v : G):
foreach (Vertex k : G):
if d[u, v] > d[u, k] + d[k, v]:
d[u, v] = d[u, w] + d[w, v]

12
13
14
15
16

A CBvs.

A DBvs.

C A

C D

C ABvs.

C DBvs.

D A

D C

D ABvs.

D CBvs.

1

D BA

+∞ 1 + 4 = 5

This edge does not actually gets
created. Values in the matrix
saves information about updated
path values.

Floyd-Warshall Algorithm

If we explored all possible paths with Dijkstra’s algorithm:
𝑂(𝑛* lg 𝑛 +𝑚 ∗ 𝑛)

Dense graph: Floyd-Warshall outperforms Dijkstra's algorithm
Sparse graph: Dijkstra’s algorithm outperforms Floyd-Warshall

Floyd-Warshall works with negative edges!

Floyd-Warshall’s algorithm explores all possible paths to
determine the shortest path in 𝑂(𝑛+)

