
Department of Computer Science

Data Structures and Algorithms

CS 225
Brad Solomon

November 9, 2022

Random Algorithms and SkipList

Learning Objectives

Motivate and introduce the skip list ADT

Conceptualize and code core functions

Distinguish the three main types of ‘random’ in computer science

Randomized Algorithms
A randomized algorithm is one which uses a source of randomness
somewhere in its implementation.

0
1 ∅
2
3
4

Greg

Frank

Be/y
Anna

Francis
Peter

Figure from Ondov et al 2016

0
1
0
0
1

H(z)

0 2 1 0 0 4 0 2 0 6
1 0 2 3 1 0 3 4 0 1
2 1 0 2 0 1 0 0 7 2

H(x)
H(y)
H(z)

Randomization in Algorithms

1. Assume input data is random to estimate average-case performance

2. Use randomness inside algorithm to estimate expected running time

3. Use randomness inside algorithm to approximate solution in fixed time

Randomization in Algorithms

1. Assume input data is random to estimate average-case performance

312

3 12

31 2

21 3

13 2

23 1

Randomization in Algorithms

1. Assume input data is random to estimate average-case performance

31

2

31

23

1

2

2

1

3

1

3

2

2

3

1

S(n) = (n − 1) +
1
n

n−1

∑
i=0

S(i) + S(n − i − 1)

Randomization in Algorithms

2. Use randomness inside algorithm to estimate expected running time

1 2 3 4 5 6 7 8

8 7 6 5 4 3 2 1

6 2 1 3 7 8 5 4

In randomized quicksort, the selection of the pivot is random.

Claim: The expected time is for any input!O(n log n)

Randomization in Algorithms

2. Use randomness inside algorithm to estimate expected running time

In randomized quicksort, the selection of the pivot is random.

Claim: The expected time is for any input!O(n log n)
Let be the total comparisons and be an indicator variable:X Xij

Xij = {
1 if ith object compared to jth

0 if ith object not compared to jth

Then…

Expectation Analysis: Randomized Quicksort

Claim: . E[Xi,j] =
2

j − i + 1
Base Case: (N=2)

Expectation Analysis: Randomized Quicksort

Claim: E[Xi,j] =
2

j − i + 1
Induction: Assume true for all inputs of < n

Expectation Analysis: Randomized Quicksort

E[X] =
n

∑
i=1

n

∑
j=i+1

E[Xij] E[Xij] =
2

j − i + 1

Expectation Analysis: Randomized Quicksort

E[X] =
n

∑
i=1

n

∑
j=i+1

E[Xij] E[Xij] =
2

j − i + 1

E[X] =
n

∑
i=1

2(1
2

+
1
3

+ . . . +
1

n − i + 1)

E[X] =
n

∑
i=1

2(Hn−1 − 1) ≤ 2n ⋅ Hn ≤ 2n ln n

Expectation Analysis: Randomized Quicksort

Summary: Randomized quick sort is regardless of inputO(n log n)

Randomness:

Assumptions:

Probabilistic Accuracy: Fermat primality test

If is prime and is not divisible by , then p a p ap−1 ≡ 1 (mod p)

But… sometimes if is composite and n an−1 ≡ 1 (mod n)

Pick a random in the range a [2, p − 2]

Probabilistic Accuracy: Fermat primality test
ap−1 ≡ 1 (mod p) ap−1 ≢ 1 (mod p)

 is primep

 is not primep

Probabilistic Accuracy: Fermat primality test
Let’s assume α = .5

First trial: and prime test returns ‘prime!’ a = a0

Is our number prime?

Second trial: and prime test returns ‘prime!’ a = a1

Third trial: and prime test returns ‘not prime!’ a = a2

What is our false positive probability? Our false negative probability?

Probabilistic Accuracy: Fermat primality test
Summary: Randomized algorithms can also have fixed (or bounded)
runtimes at the cost of probabilistic accuracy.

Randomness:

Assumptions:

Types of randomized algorithms
A Las Vegas algorithm is a randomized algorithm which will always
give correct answer if run enough times but has no fixed runtime.

A Monte Carlo algorithm is a randomized algorithm which will run a
fixed number of iterations and may give the correct answer.

Randomized Data Structures
Sometimes a data structure can be too ordered / too structured

Randomized data structures rely on expected performance

Linked List

5 2 3 7 8
Ø

head_

Pros:

Cons:

Linked List with ‘Checkpoints’

2 3 5 7 8
Ø

head_

With some small overhead costs, we can store checkpoints.

Linked List with Perfect Checkpoints

2 3 5 9 10
Ø

head_

2 5 10

5

For optimal checkpoints, we want half the number of items at each level.

head_

head_

Ø

Ø

Linked List with Perfect Checkpoints

5 109
Ø

5 10

5

For optimal checkpoints, we want half the number of items at each level.

Ø

Ø

Maintaining this while inserting and deleting is too costly!

6 7 8

2 3 5 7 8
Ø

head_

Linked List with Random Checkpoints
Instead of having exactly half each level, let’s have approximately half!

2 3 5 7 8
Ø

head_

73head_ 8
Ø

3head_ 8
Ø

3head_
Ø

Linked List with Random Checkpoints
Instead of having exactly half each level, let’s have approximately half!

Worst Case Performance:

The Skip List

7
2

8

5

3

Ø
Ø
Ø
Ø

An ordered linked list where each node has variable size

Claim: The expected time to insert, search, or delete is O(log n)

Each node has at most one key but an arbitrary number of pointers

The decision for height is randomized

Skip List
template <class T>
class SkipList{
 public:
 class SkipNode{
 public:
 SkipNode(){
 next.push_back(nullptr);
 }

 SkipNode(int h, T & d){
 data = d;
 for(int i = 0; i <= h; i++){
 next.push_back(nullptr);
 }
 }
 T data;
 std::vector<SkipNode*> next;
 };

 int max; // max height
 float c; //update constant
 SkipNode* head;
 ...

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24

