
Department of Computer Science

Data Structures and Algorithms

CS 225

Brad Solomon

November 7, 2022

Probability in Computer Science

Learning Objectives

Review fundamentals of probability in computing

Distinguish the three main types of ‘random’ in computer science

Formalize the concept of randomized algorithms

Randomized Algorithms
A randomized algorithm is one which uses a source of randomness
somewhere in its implementation.

0
1 ∅
2
3
4

Greg

Frank

Betty
Anna

Francis
Peter

Figure from Ondov et al 2016

0
1
0
0
1

H(z)

0 2 1 0 0 4 0 2 0 6
1 0 2 3 1 0 3 4 0 1
2 1 0 2 0 1 0 0 7 2

H(x)
H(y)
H(z)

A faulty list
Imagine you have a list ADT implementation except…

Every time you called insert, it would fail 50% of the time.

Quick Primes with Fermat’s Primality Test
If is prime and is not divisible by , then p a p ap−1 ≡ 1 (mod p)

But… sometimes if is composite and n an−1 ≡ 1 (mod n)

Fundamentals of Probability
Imagine you roll a pair of six-sided dice.

The sample space is the set of all possible outcomes.Ω

An event is any subset.E ⊆ Ω

Fundamentals of Probability
Imagine you roll a pair of six-sided dice. What is the expected value?

A random variable is a function from events to numeric values.

The expectation of a (discrete) random variable is:

E[X] = ∑
x∈Ω

Pr{X = x} ⋅ x

Fundamentals of Probability
Imagine you roll a pair of six-sided dice. What is the expected value?

Linearity of Expectation: For any two random variables and ,X Y
E[X + Y] = E[X] + E[Y]

E[X + Y] = ∑
x

x ⋅ Pr{X = x} + ∑
y

y ⋅ Pr{Y = y}

Fundamentals of Probability
Imagine you roll a pair of six-sided dice. What is the expected value?

Linearity of Expectation: For any two random variables and ,X Y
E[X + Y] = E[X] + E[Y]

E[X + Y] = ∑
x

∑
y

Pr{X = x, Y = y}(x + y)

E[X + Y] = ∑
x

x∑
y

Pr{X = x, Y = y} + ∑
y

y∑
x

Pr{X = x, Y = y}

Fundamentals of Probability
Imagine you roll a pair of six-sided dice. What is the expected value?

Linearity of Expectation: For any two random variables and ,X Y
E[X + Y] = E[X] + E[Y]

Randomization in Algorithms

1. Assume input data is random to estimate average-case performance

2. Use randomness inside algorithm to estimate expected running time

3. Use randomness inside algorithm to approximate solution in fixed time

Average-Case Analysis: BST
R

RL
Smallest Largest

Average-Case Analysis: BST
Let be the average total internal path length over all BSTs that
can be constructed by uniform random insertion of objects

S(n)
n

Claim: is S(n) O(n log n)
N=0: N=1:

Average-Case Analysis: BST
Let be the average total internal path length over all BSTs that
can be constructed by uniform random insertion of objects

S(n)
n

31

2

31

23

1

2

2

1

3

1

3

2

2

3

1

N=3:

Average-Case Analysis: BST
Let be the average total internal path length over all BSTs that
can be constructed by uniform random insertion of objects

S(n)
n

Let be the number of nodes in the left subtree.0 ≤ i ≤ n − 1

Then for a fixed , i S(n) = (n − 1) + S(i) + S(n − i − 1)

Average-Case Analysis: BST

S(n) = (n − 1) +
1
n

n−1

∑
i=0

S(i) + S(n − i − 1)

Let be the average total internal path length over all BSTs that
can be constructed by uniform random insertion of objects

S(n)
n

Average-Case Analysis: BST

S(n) = (n − 1) +
2
n

n−1

∑
i=1

S(i)

S(n) ≤ (n − 1) +
2
n ∫

n

1
(cx ln x)dx

S(n) = (n − 1) +
2
n

n−1

∑
i=1

(ci ln i)

S(n) ≤ (n − 1) +
2
n (cn2

2
ln n −

cn2

4
+

c
4) ≈ cn ln n

Average-Case Analysis: BST
Let be the average total internal path length over all BSTs that
can be constructed by uniform random insertion of objects

S(n)
n

Since is , if we assume we are randomly choosing a
node to insert, find, or delete* then each operation takes:

S(n) O(n log n)

Average-Case Analysis: BST

Summary: All operations are on average O(log n)

Randomness:

Assumptions:

6 1 0 3 7 9 2 4

1 0 3 2 4 9 6 7

1 0 3 2 4 9 6 7

1 0 2 3 4 6 7 9

1 0 2 3 4 6 7 9

0 1 2 3 4 6 7 9

Expectation Analysis: Randomized Quicksort

6 1 0 3 7 9 2 4

1 0 3 2 4 9 6 7

1 0 3 2 4 9 6 7

1 0 2 3 4 6 7 9

1 0 2 3 4 6 7 9

0 1 2 3 4 6 7 9

Expectation Analysis: Randomized Quicksort

0 1 2 3 4 5 6 7

0 1 2 3 4 5 6 7

0 1 2 3 4 5 6 7

0 1 2 3 4 5 6 7

…

Expectation Analysis: Randomized Quicksort
In randomized quicksort, the selection of the pivot is random.

Claim: The expected time is for any input!O(n log n)
Let be the total comparisons and be an indicator variable:X Xij

Xij = {
1 if ith object compared to jth

0 if ith object not compared to jth

Then…

Expectation Analysis: Randomized Quicksort

Claim: . E[Xi,j] =
2

j − i + 1
Base Case: (N=2)

Expectation Analysis: Randomized Quicksort

Claim: E[Xi,j] =
2

j − i + 1
Induction: Assume true for all inputs of < n

Expectation Analysis: Randomized Quicksort

E[X] =
n

∑
i=1

n

∑
j=i+1

E[Xij] E[Xij] =
2

j − i + 1

Expectation Analysis: Randomized Quicksort

E[X] =
n

∑
i=1

n

∑
j=i+1

E[Xij] E[Xij] =
2

j − i + 1

E[X] =
n

∑
i=1

2(1
2

+
1
3

+ . . . +
1

n − i + 1)

E[X] =
n

∑
i=1

2(Hn−1 − 1) ≤ 2n ⋅ Hn ≤ 2n ln n

Expectation Analysis: Randomized Quicksort

Summary: Randomized quick sort is regardless of inputO(n log n)

Randomness:

Assumptions:

Probabilistic Accuracy: Fermat primality test

If is prime and is not divisible by , then p a p ap−1 ≡ 1 (mod p)

But… sometimes if is composite and n an−1 ≡ 1 (mod n)

Pick a random in the range a [2, p − 2]

Probabilistic Accuracy: Fermat primality test
ap−1 ≡ 1 (mod p) ap−1 ≢ 1 (mod p)

 is primep

 is not primep

Probabilistic Accuracy: Fermat primality test
Let’s assume α = .5

First trial: and prime test returns ‘prime!’ a = a0

Is our number prime?

Second trial: and prime test returns ‘prime!’ a = a1

Third trial: and prime test returns ‘not prime!’ a = a2

What is our false positive probability? Our false negative probability?

Probabilistic Accuracy: Fermat primality test
Summary: Randomized algorithms can also have fixed (or bounded)
runtimes at the cost of probabilistic accuracy.

Randomness:

Assumptions:

Types of randomized algorithms
A Las Vegas algorithm is a randomized algorithm which will always
give correct answer if run enough times but has no fixed runtime.

A Monte Carlo algorithm is a randomized algorithm which will run a
fixed number of iterations and may give the correct answer.

Next Class: Randomized Data Structures
Sometimes a data structure can be too ordered / too structured

Randomized data structures rely on expected performance

Randomized data structures ‘cheat’ tradeoffs!

