Learning Objectives

Formalize the concept of randomized algorithms

Review fundamentals of probability in computing

Distinguish the three main types of ‘random’ in computer science
Randomized Algorithms

A **randomized algorithm** is one which uses a source of randomness somewhere in its implementation.

![Diagram](https://via.placeholder.com/150)

Figure from Ondov et al 2016

<table>
<thead>
<tr>
<th>$H(x)$</th>
<th>0</th>
<th>2</th>
<th>1</th>
<th>0</th>
<th>0</th>
<th>4</th>
<th>0</th>
<th>2</th>
<th>0</th>
<th>6</th>
</tr>
</thead>
<tbody>
<tr>
<td>$H(y)$</td>
<td>1</td>
<td>0</td>
<td>2</td>
<td>3</td>
<td>1</td>
<td>0</td>
<td>3</td>
<td>4</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>$H(z)$</td>
<td>2</td>
<td>1</td>
<td>0</td>
<td>2</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>7</td>
<td>2</td>
</tr>
</tbody>
</table>
A faulty list

Imagine you have a list ADT implementation *except*…

Every time you called *insert*, it would fail 50% of the time.
Quick Primes with Fermat’s Primality Test

If p is prime and a is not divisible by p, then $a^{p-1} \equiv 1 \pmod{p}$

But… sometimes if n is composite and $a^{n-1} \equiv 1 \pmod{n}$
Imagine you roll a pair of six-sided dice.
The **sample space** Ω is the set of all possible outcomes.

An **event** $E \subseteq \Omega$ is any subset.
Fundamentals of Probability

Imagine you roll a pair of six-sided dice. What is the expected value?

A random variable is a function from events to numeric values.

The expectation of a (discrete) random variable is:

\[E[X] = \sum_{x \in \Omega} Pr\{X = x\} \cdot x \]
Fundamentals of Probability

Imagine you roll a pair of six-sided dice. What is the expected value?

Linearity of Expectation: For any two random variables X and Y,

$$E[X + Y] = E[X] + E[Y]$$
Fundamentals of Probability

Imagine you roll a pair of six-sided dice. What is the expected value?

Linearity of Expectation: For any two random variables X and Y,

$$E[X + Y] = E[X] + E[Y]$$

$$= \sum_x \sum_y Pr\{X = x, Y = y\}(x + y)$$

$$= \sum_x x \sum_y Pr\{X = x, Y = y\} + \sum_y y \sum_x Pr\{X = x, Y = y\}$$

$$= \sum_x x \cdot Pr\{X = x\} + \sum_y y \cdot Pr\{Y = y\}$$
Imagine you roll a pair of six-sided dice. What is the expected value?

Linearity of Expectation: For any two random variables X and Y,

$$E[X + Y] = E[X] + E[Y]$$
Randomization in Algorithms

1. Assume input data is random to estimate average-case performance

2. Use randomness inside algorithm to estimate expected running time

3. Use randomness inside algorithm to approximate solution in fixed time
Average-Case Analysis: BST

Smallest

Largest

R

L

R
Average-Case Analysis: BST

Let $S(n)$ be the average total internal path length over all BSTs that can be constructed by uniform random insertion of n objects.

Claim: $S(n)$ is $O(n \log n)$

N=0:

N=1:
Average-Case Analysis: BST

Let $S(n)$ be the average total internal path length over all BSTs that can be constructed by uniform random insertion of n objects.

$N=3$:

![Diagram](attachment:image.png)
Average-Case Analysis: BST

Let $S(n)$ be the average total internal path length over all BSTs that can be constructed by uniform random insertion of n objects.

Let $0 \leq i \leq n - 1$ be the number of nodes in the left subtree.

Then for a fixed i, $S(n) = (n - 1) + S(i) + S(n - i - 1)$.
Average-Case Analysis: BST

Let $S(n)$ be the average total internal path length over all BSTs that can be constructed by uniform random insertion of n objects.

$$S(n) = (n - 1) + \frac{1}{n} \sum_{i=0}^{n-1} S(i) + S(n - i - 1)$$
Average-Case Analysis: BST

\[S(n) = (n - 1) + \frac{2}{n} \sum_{i=1}^{n-1} S(i) \]

\[S(n) = (n - 1) + \frac{2}{n} \sum_{i=1}^{n-1} (c_i \ln i) \]

\[S(n) \leq (n - 1) + \frac{2}{n} \int_{1}^{n} (cx \ln x) \, dx \]

\[S(n) \leq (n - 1) + \frac{2}{n} \left(\frac{cn^2}{2} \ln n - \frac{cn^2}{4} + \frac{c}{4} \right) \approx cn \ln n \]
Average-Case Analysis: BST

Let $S(n)$ be the average total internal path length over all BSTs that can be constructed by uniform random insertion of n objects.

Since $S(n)$ is $O(n \log n)$, if we assume we are randomly choosing a node to insert, find, or delete* then each operation takes:
Average-Case Analysis: BST

Summary: All operations are on average $O(\log n)$

Randomness:

Assumptions:
Expectation Analysis: Randomized Quicksort
Expectation Analysis: Randomized Quicksort

6 1 0 3 7 9 2 4

1 0 3 2 4 9 6 7

1 0 3 2 4 9 6 7

1 0 2 3 4 6 7 9

1 0 2 3 4 6 7 9

0 1 2 3 4 5 6 7

0 1 2 3 4 5 6 7

0 1 2 3 4 5 6 7

...
Expectation Analysis: Randomized Quicksort

In randomized quicksort, the selection of the pivot is random.

Claim: The expected time is \(O(n \log n) \) for any input!

Let \(X \) be the total comparisons and \(X_{ij} \) be an indicator variable:

\[
X_{ij} = \begin{cases}
1 & \text{if } i\text{th object compared to } j\text{th} \\
0 & \text{if } i\text{th object not compared to } j\text{th}
\end{cases}
\]

Then…
Expectation Analysis: Randomized Quicksort

Claim: \(E[X_{i,j}] = \frac{2}{j - i + 1} \).

Base Case: \((N=2)\)
Expectation Analysis: Randomized Quicksort

Claim: $E[X_{i,j}] = \frac{2}{j - i + 1}$

Induction: Assume true for all inputs of $n < n$
Expectation Analysis: Randomized Quicksort

\[E[X] = \sum_{i=1}^{n} \sum_{j=i+1}^{n} E[X_{ij}] \quad E[X_{ij}] = \frac{2}{j - i + 1} \]
Expectation Analysis: Randomized Quicksort

\[E[X] = \sum_{i=1}^{n} \sum_{j=i+1}^{n} E[X_{ij}] \quad E[X_{ij}] = \frac{2}{j - i + 1} \]

\[E[X] = \sum_{i=1}^{n} 2 \left(\frac{1}{2} + \frac{1}{3} + \ldots + \frac{1}{n - i + 1} \right) \]

\[E[X] = \sum_{i=1}^{n} 2(H_{n-1} - 1) \leq 2n \cdot H_n \leq 2n \ln n \]
Expectation Analysis: Randomized Quicksort

Summary: Randomized quick sort is $O(n \log n)$ regardless of input

Randomness:

Assumptions:
Probabilistic Accuracy: Fermat primality test

Pick a random a in the range $[2, p - 2]$

If p is prime and a is not divisible by p, then $a^{p-1} \equiv 1 \pmod{p}$

But… *sometimes* if n is composite and $a^{n-1} \equiv 1 \pmod{n}$
Probabilistic Accuracy: Fermat primality test

<table>
<thead>
<tr>
<th>$a^{p-1} \equiv 1 \pmod{p}$</th>
<th>$a^{p-1} \not\equiv 1 \pmod{p}$</th>
</tr>
</thead>
<tbody>
<tr>
<td>p is prime</td>
<td></td>
</tr>
<tr>
<td>p is not prime</td>
<td></td>
</tr>
</tbody>
</table>
Probabilistic Accuracy: Fermat primality test

Let’s assume $\alpha = .5$

First trial: $a = a_0$ and prime test returns ‘prime!’

Second trial: $a = a_1$ and prime test returns ‘prime!’

Third trial: $a = a_2$ and prime test returns ‘not prime!’

Is our number prime?

What is our **false positive** probability? Our **false negative** probability?
Probabilistic Accuracy: Fermat primality test

Summary: Randomized algorithms can also have fixed (or bounded) runtimes at the cost of probabilistic accuracy.

Randomness:

Assumptions:
Types of randomized algorithms

A **Las Vegas** algorithm is a randomized algorithm which will always give correct answer if run enough times but has no fixed runtime.

A **Monte Carlo** algorithm is a randomized algorithm which will run a fixed number of iterations and may give the correct answer.
Next Class: Randomized Data Structures

Sometimes a data structure can be **too ordered / too structured**

Randomized data structures rely on **expected** performance

Randomized data structures ‘cheat’ tradeoffs!