Data Structures and Algorithms Probability in Computer Science

CS 225
November 7, 2022
Brad Solomon

Department of Computer Science

Learning Objectives

Formalize the concept of randomized algorithms

Review fundamentals of probability in computing

Distinguish the three main types of 'random'in computer science

Randomized Algorithms

A randomized algorithm is one which uses a source of randomness somewhere in its implementation.

Figure from Ondov et al 2016

$$
\begin{array}{lllllllllll}
H(x) & 0 & 2 & 1 & 0 & 0 & 4 & 0 & 2 & 0 & 6 \\
H(y) & 1 & 0 & 2 & 3 & 1 & 0 & 3 & 4 & 0 & 1 \\
H(z) & 2 & 1 & 0 & 2 & 0 & 1 & 0 & 0 & 7 & 2
\end{array}
$$

A faulty list

Imagine you have a list ADT implementation except...
Every time you called insert, it would fail 50% of the time.

Quick Primes with Fermat's Primality Test

If p is prime and a is not divisible by p, then $a^{p-1} \equiv 1(\bmod p)$
But... sometimes if n is composite and $a^{n-1} \equiv 1(\bmod n)$

Fundamentals of Probability

Imagine you roll a pair of six-sided dice.
The sample space Ω is the set of all possible outcomes.

An event $E \subseteq \Omega$ is any subset.

Fundamentals of Probability

Imagine you roll a pair of six-sided dice. What is the expected value?
A random variable is a function from events to numeric values.

The expectation of a (discrete) random variable is:

$$
E[X]=\sum_{x \in \Omega} \operatorname{Pr}\{X=x\} \cdot x
$$

Fundamentals of Probability

Imagine you roll a pair of six-sided dice. What is the expected value?
Linearity of Expectation: For any two random variables X and Y,
$E[X+Y]=E[X]+E[Y]$

Fundamentals of Probability

Imagine you roll a pair of six-sided dice. What is the expected value?
Linearity of Expectation: For any two random variables X and Y,
$E[X+Y]=E[X]+E[Y]$

$$
\begin{aligned}
& =\sum_{x} \sum_{y} \operatorname{Pr}\{X=x, Y=y\}(x+y) \\
& =\sum_{x} x \sum_{y} \operatorname{Pr}\{X=x, Y=y\}+\sum_{y} y \sum_{x} \operatorname{Pr}\{X=x, Y=y\} \\
& =\sum_{x} x \cdot \operatorname{Pr}\{X=x\}+\sum_{y} y \cdot \operatorname{Pr}\{Y=y\}
\end{aligned}
$$

Fundamentals of Probability

Imagine you roll a pair of six-sided dice. What is the expected value?
Linearity of Expectation: For any two random variables X and Y,
$E[X+Y]=E[X]+E[Y]$

Randomization in Algorithms

1. Assume input data is random to estimate average-case performance
2. Use randomness inside algorithm to estimate expected running time
3. Use randomness inside algorithm to approximate solution in fixed time

Average-Case Analysis: BST

Smallest

Largest

Average-Case Analysis: BST

Let $S(n)$ be the average total internal path length over all BSTs that can be constructed by uniform random insertion of n objects

Claim: $S(n)$ is $O(n \log n)$
$\mathbf{N}=0: \quad \mathbf{N}=1:$

Average-Case Analysis: BST

Let $S(n)$ be the average total internal path length over all BSTs that can be constructed by uniform random insertion of n objects
$\mathrm{N}=3$:

Average-Case Analysis: BST

Let $S(n)$ be the average total internal path length over all BSTs that can be constructed by uniform random insertion of n objects Let $0 \leq i \leq n-1$ be the number of nodes in the left subtree.

Then for a fixed $i, S(n)=(n-1)+S(i)+S(n-i-1)$

Average-Case Analysis: BST

Let $S(n)$ be the average total internal path length over all BSTs that can be constructed by uniform random insertion of n objects

$$
S(n)=(n-1)+\frac{1}{n} \sum_{i=0}^{n-1} S(i)+S(n-i-1)
$$

Average-Case Analysis: BST

$$
\begin{aligned}
& S(n)=(n-1)+\frac{2}{n} \sum_{i=1}^{n-1} S(i) \\
& S(n)=(n-1)+\frac{2}{n} \sum_{i=1}^{n-1}(c i \ln i) \\
& S(n) \leq(n-1)+\frac{2}{n} \int_{1}^{n}(c x \ln x) d x \\
& S(n) \leq(n-1)+\frac{2}{n}\left(\frac{c n^{2}}{2} \ln n-\frac{c n^{2}}{4}+\frac{c}{4}\right) \approx c n \ln n
\end{aligned}
$$

Average-Case Analysis: BST

Let $S(n)$ be the average total internal path length over all BSTs that can be constructed by uniform random insertion of n objects

Since $S(n)$ is $O(n \log n)$, if we assume we are randomly choosing a node to insert, find, or delete* then each operation takes:

Average-Case Analysis: BST

Summary: All operations are on average $O(\log n)$

Randomness:

Assumptions:

Expectation Analysis: Randomized Quicksort

6	1	0	3	7	9	2	4
1	0	3	2	4	9	6	7
1	0	3	2	4	9	6	7
1	0	2	3	4	6	7	7
1	0	2	3	4	4	6	7
0	1	2	3	4	6		

Expectation Analysis: Randomized Quicksort

6	1	0	3		79		2										
1	0	3	2	4	4.9		6	7	0	1	2			4	5	6	
1	0		2	4	4.9	9	6		0	1	2	2	3	4	5	6	7
1	0	2	3				7	9	0	1	2	2	3	4	5	6	7
1	0	2	3	1	4		7										
0	1	2	3	4	4		7		0	1	2				5	6	

Expectation Analysis: Randomized Quicksort

In randomized quicksort, the selection of the pivot is random.
Claim: The expected time is $O(n \log n)$ for any input!
Let X be the total comparisons and $X_{i j}$ be an indicator variable:
$X_{i j}=\left\{\begin{array}{l}1 \text { if } i \text { th object compared to } j \text { th } \\ 0 \text { if } i \text { th object not compared to } j \text { th }\end{array}\right.$
Then...

Expectation Analysis: Randomized Quicksort

Claim: $E\left[X_{i, j}\right]=\frac{2}{j-i+1}$.
Base Case: ($\mathrm{N}=2$)

Expectation Analysis: Randomized Quicksort

Claim: $E\left[X_{i, j}\right]=\frac{2}{j-i+1} \quad$ Induction: Assume true for all inputs of $<n$

Expectation Analysis: Randomized Quicksort

$$
E[X]=\sum_{i=1}^{n} \sum_{j=i+1}^{n} E\left[X_{i j}\right] \quad E\left[X_{i j}\right]=\frac{2}{j-i+1}
$$

Expectation Analysis: Randomized Quicksort

$$
\begin{aligned}
& E[X]=\sum_{i=1}^{n} \sum_{j=i+1}^{n} E\left[X_{i j}\right] \quad E\left[X_{i j}\right]=\frac{2}{j-i+1} \\
& E[X]=\sum_{i=1}^{n} 2\left(\frac{1}{2}+\frac{1}{3}+\ldots+\frac{1}{n-i+1}\right) \\
& E[X]=\sum_{i=1}^{n} 2\left(H_{n-1}-1\right) \leq 2 n \cdot H_{n} \leq 2 n \ln n
\end{aligned}
$$

Expectation Analysis: Randomized Quicksort

Summary: Randomized quick sort is $O(n \log n)$ regardless of input

Randomness:

Assumptions:

Probabilistic Accuracy: Fermat primality test

Pick a random a in the range [2, $p-2$]
If p is prime and a is not divisible by p, then $a^{p-1} \equiv 1(\bmod p)$
But... sometimes if n is composite and $a^{n-1} \equiv 1(\bmod n)$

Probabilistic Accuracy: Fermat primality test

	$a^{p-1} \equiv 1(\bmod p)$	$a^{p-1} \not \equiv 1(\bmod p)$
p is prime		
p is not prime		

Probabilistic Accuracy: Fermat primality test

Let's assume $\alpha=.5$
First trial: $a=a_{0}$ and prime test returns 'prime!'
Second trial: $a=a_{1}$ and prime test returns 'prime!'
Third trial: $a=a_{2}$ and prime test returns 'not prime!'
Is our number prime?

What is our false positive probability? Our false negative probability?

Probabilistic Accuracy: Fermat primality test

Summary: Randomized algorithms can also have fixed (or bounded) runtimes at the cost of probabilistic accuracy.

Randomness:

Assumptions:

Types of randomized algorithms

A Las Vegas algorithm is a randomized algorithm which will always give correct answer if run enough times but has no fixed runtime.

A Monte Carlo algorithm is a randomized algorithm which will run a fixed number of iterations and may give the correct answer.

Next Class: Randomized Data Structures

Sometimes a data structure can be too ordered / too structured

Randomized data structures rely on expected performance

Randomized data structures 'cheat' tradeoffs!

