Data Structures and Algorithms

Probability in Computer Science

CS 225 November 7, 2022
Brad Solomon

UNIVERSITY OF

ILLINOIS

URBANA-CHAMPAIGN

Department of Computer Science

Learning Objectives

Formalize the concept of randomized algorithms

Review fundamentals of probability in computing

Distinguish the three main types of random’in computer science

Randomized Algorithms

A randomized algorithm is one which uses a source of randomness
somewhere in its implementation.

‘_/v 1 119
0 2 | @+=—>| Frank =¥ [Francis
0 3 [@r—>| Anna |—> Peter
1 4 |@—>| Betty

Figure from Ondov et al 2016

A faulty list

Imagine you have a list ADT implementation except...

Every time you called insert, it would fail 50% of the time.

Quick Primes with Fermat’s Primality Test

If p is prime and a is not divisible by p, then a”~! = 1 (mod p)

But... sometimes if n is composite and "' = 1 (mod n)

Fundamentals of Probability

Imagine you roll a pair of six-sided dice.

The sample space €2 is the set of all possible outcomes.

An event £ C Q2 is any subset.

Fundamentals of Probability

Imagine you roll a pair of six-sided dice. What is the expected value?

A random variable is a function from events to numeric values.

The expectation of a (discrete) random variable is:

E[X]=) Pr{X=x}-x

xell

Fundamentals of Probability

Imagine you roll a pair of six-sided dice. What is the expected value?

Linearity of Expectation: For any two random variables X and Y,
EIX+ Y] =EX]|+ E|Y]

Fundamentals of Probability

Imagine you roll a pair of six-sided dice. What is the expected value?

Linearity of Expectation: For any two random variables X and Y,
EIX+ Y] =E|X]|+ E|Y]

— ZZPr{sz,Yzy}(x+y)
X oy

=Y x Y PriX=xY=y}+ » y» PriX=xY=y)
X y y X

=Y x-PriX=x}+) y Pr{Y=y)
X Y

Fundamentals of Probability @

Imagine you roll a pair of six-sided dice. What is the expected value?

Linearity of Expectation: For any two random variables X and Y,
EIX+ Y] =EX]|+ E|Y]

Randomization in Algorithms

1. Assume input data is random to estimate average-case performance

2. Use randomness inside algorithm to estimate expected running time

3. Use randomness inside algorithm to approximate solution in fixed time

Average-Case Analysis: BST /C'D\

Smallest Largest A A

Average-Case Analysis: BST

Let S(n) be the average total internal path length over all BSTs that
can be constructed by uniform random insertion of n objects

Claim: S(n) is O(n log n)
N=0: N=1:

Average-Case Analysis: BST

Let S(n) be the average total internal path length over all BSTs that
can be constructed by uniform random insertion of n objects

N A

O

Average-Case Analysis: BST

Let S(n) be the average total internal path length over all BSTs that
can be constructed by uniform random insertion of n objects

Let) <1 < n —1bethe number of nodes in the left subtree.

Thenforafixedi, S(n) =n—-1)+SGO)+Sn—-i—-1)

Average-Case Analysis: BST

Let S(n) be the average total internal path length over all BSTs that
can be constructed by uniform random insertion of n objects

n—1
S(n) = (n — 1)+%Z;S(i)+8(n—i— 1)

Average-Case Analysis: BST
n—1
S(n) = (n—1) +%i:21S(i)

n—1
S(n) = (n — 1)+%§(ci In i)

Sn)<(mn—-1)+ %J (cx In x)dx
1

n
S < (0 2(cnzl cn’ c> l
n n— I nn-— I ~Ccn ilnn
B n- 2 4 4

Average-Case Analysis: BST

Let S(n) be the average total internal path length over all BSTs that
can be constructed by uniform random insertion of n objects

Since S(n)is O(n log n), if we assume we are randomly choosing a
node to insert, find, or delete* then each operation takes:

Average-Case Analysis: BST

Summary: All operations are on average O(log n)

Randomness:

Assumptions:

Expectation Analysis: Randomized Quicksort
el1fol3]7]o]2
HBEEHA : BEE
BEE: B8
B0 B 0 B

1

Expectation Analysis: Randomized Quicksort
el1fol3]7]o]2
[1oT=T- T 7] [of2]2]=]]5]¢ KM
‘1‘0‘39‘6. of1]2]3]4]5 |CHEN
‘1‘0 ‘0‘1‘2‘3‘4

Expectation Analysis: Randomized Quicksort

In randomized quicksort, the selection of the pivot is random.

Claim: The expected time is O(n log n) for any input!

Let X be the total comparisons and X;; be an indicator variable:

X.. =

{ 1 if ith object compared to jth
ij

0 if ith object not compared to jth

Then...

Expectation Analysis: Randomized Quicksort

Claim: E|X. .| = :
LX) j—i+1

Base Case: (N=2)

Expectation Analysis: Randomized Quicksort

Claim: E[Xl-,j] = - Induction: Assume true for all inputs of < n

J—i+1
HEEEENE

Expectation Analysis: Randomized Quicksort

E[X] = 2 2 EIX;l EIX,] =-

i=1 j=i+1 J—i+1

Expectation Analysis: Randomized Quicksort

px1=Y Y EX) Epx,) =-

i=1 j=i+1 J—i+l

1
n—i+1

)

E[X]=22(%+%+...+
=1

EX]=) 2(H, ,—1)<2n-H,<2nlnn
=1

Expectation Analysis: Randomized Quicksort @

Summary: Randomized quick sortis O(n log n) regardless of input

Randomness:

Assumptions:

Probabilistic Accuracy: Fermat primality test
Pickarandom a intherange [2, p — 2]

If p is prime and a is not divisible by p, then a”~! = 1 (mod p)

But... sometimes if n is composite and ¢! = 1 (mod n)

Probabilistic Accuracy: Fermat primality test

a’~'=1 (modp) | ¢ ' #1 (modp)

pis prime

p is not prime

Probabilistic Accuracy: Fermat primality test

Let’s assume o = .5

First trial: a = a, and prime test returns ‘prime!’
Second trial: @ = a; and prime test returns ‘prime!’
Third trial: a = a, and prime test returns ‘not prime!’

Is our number prime?

What is our false positive probability? Our false negative probability?

Probabilistic Accuracy: Fermat primality test @

Summary: Randomized algorithms can also have fixed (or bounded)
runtimes at the cost of probabilistic accuracy.

Randomness:

Assumptions:

Types of randomized algorithms

A Las Vegas algorithm is a randomized algorithm which will always
give correct answer if run enough times but has no fixed runtime.

A Monte Carlo algorithm is a randomized algorithm which will run a
fixed number of iterations and may give the correct answer.

Next Class: Randomized Data Structures

Sometimes a data structure can be too ordered / too structured

Randomized data structures rely on expected performance

Randomized data structures ‘cheat’ tradeoffs!

