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Probability in Computer Science



Learning Objectives

Review fundamentals of probability in computing

Distinguish the three main types of ‘random’ in computer science

Formalize the concept of randomized algorithms



Randomized Algorithms
A randomized algorithm is one which uses a source of randomness 
somewhere in its implementation.
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A faulty list
Imagine you have a list ADT implementation except…

Every time you called insert, it would fail 50% of the time.



Quick Primes with Fermat’s Primality Test
If  is prime and  is not divisible by , then p a p ap−1 ≡ 1 (mod p)

But… sometimes if  is composite and n an−1 ≡ 1 (mod n)



Fundamentals of Probability
Imagine you roll a pair of six-sided dice.

The sample space  is the set of all possible outcomes.Ω

An event  is any subset.E ⊆ Ω



Fundamentals of Probability
Imagine you roll a pair of six-sided dice. What is the expected value?

A random variable is a function from events to numeric values.

The expectation of a (discrete) random variable is:

E[X] = ∑
x∈Ω

Pr{X = x} ⋅ x



Fundamentals of Probability
Imagine you roll a pair of six-sided dice. What is the expected value?

Linearity of Expectation: For any two random variables  and ,X Y
E[X + Y ] = E[X] + E[Y ]



E[X + Y ] = ∑
x

x ⋅ Pr{X = x} + ∑
y

y ⋅ Pr{Y = y}

Fundamentals of Probability
Imagine you roll a pair of six-sided dice. What is the expected value?

Linearity of Expectation: For any two random variables  and ,X Y
E[X + Y ] = E[X] + E[Y ]

E[X + Y ] = ∑
x

∑
y

Pr{X = x, Y = y}(x + y)

E[X + Y ] = ∑
x

x∑
y

Pr{X = x, Y = y} + ∑
y

y∑
x

Pr{X = x, Y = y}



Fundamentals of Probability
Imagine you roll a pair of six-sided dice. What is the expected value?

Linearity of Expectation: For any two random variables  and ,X Y
E[X + Y ] = E[X] + E[Y ]



Randomization in Algorithms

1. Assume input data is random to estimate average-case performance

2. Use randomness inside algorithm to estimate expected running time

3. Use randomness inside algorithm to approximate solution in fixed time



Average-Case Analysis: BST
R

RL
Smallest Largest



Average-Case Analysis: BST
Let  be the average total internal path length over all BSTs that 
can be constructed by uniform random insertion of  objects

S(n)
n

Claim:  is S(n) O(n log n)
N=0: N=1:



Average-Case Analysis: BST
Let  be the average total internal path length over all BSTs that 
can be constructed by uniform random insertion of  objects

S(n)
n
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Average-Case Analysis: BST
Let  be the average total internal path length over all BSTs that 
can be constructed by uniform random insertion of  objects

S(n)
n

Let  be the number of nodes in the left subtree.0 ≤ i ≤ n − 1

Then for a fixed , i S(n) = (n − 1) + S(i) + S(n − i − 1)



Average-Case Analysis: BST

S(n) = (n − 1) +
1
n

n−1

∑
i=0

S(i) + S(n − i − 1)

Let  be the average total internal path length over all BSTs that 
can be constructed by uniform random insertion of  objects

S(n)
n



Average-Case Analysis: BST

S(n) = (n − 1) +
2
n

n−1

∑
i=1

S(i)

S(n) ≤ (n − 1) +
2
n ∫

n

1
(cx ln x)dx

S(n) = (n − 1) +
2
n

n−1

∑
i=1

(ci ln i)

S(n) ≤ (n − 1) +
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n ( cn2

2
ln n −

cn2
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4 ) ≈ cn ln n



Average-Case Analysis: BST
Let  be the average total internal path length over all BSTs that 
can be constructed by uniform random insertion of  objects

S(n)
n

Since  is , if we assume we are randomly choosing a 
node to insert, find, or delete* then each operation takes:

S(n) O(n log n)



Average-Case Analysis: BST

Summary: All operations are on average O(log n)

Randomness:

Assumptions:



6 1 0 3 7 9 2 4

1 0 3 2 4 9 6 7

1 0 3 2 4 9 6 7

1 0 2 3 4 6 7 9

1 0 2 3 4 6 7 9

0 1 2 3 4 6 7 9

Expectation Analysis: Randomized Quicksort



6 1 0 3 7 9 2 4

1 0 3 2 4 9 6 7

1 0 3 2 4 9 6 7

1 0 2 3 4 6 7 9

1 0 2 3 4 6 7 9

0 1 2 3 4 6 7 9

Expectation Analysis: Randomized Quicksort

0 1 2 3 4 5 6 7

0 1 2 3 4 5 6 7

0 1 2 3 4 5 6 7

0 1 2 3 4 5 6 7

…



Expectation Analysis: Randomized Quicksort
In randomized quicksort, the selection of the pivot is random.

Claim: The expected time is  for any input!O(n log n)
Let  be the total comparisons and  be an indicator variable:X Xij

Xij = {
1 if ith object compared to jth

0 if ith object not compared to jth

Then…



Expectation Analysis: Randomized Quicksort

Claim: . E[Xi,j] =
2

j − i + 1
Base Case: (N=2)



Expectation Analysis: Randomized Quicksort

Claim: E[Xi,j] =
2

j − i + 1
Induction: Assume true for all inputs of < n



Expectation Analysis: Randomized Quicksort

E[X] =
n

∑
i=1

n

∑
j=i+1

E[Xij] E[Xij] =
2

j − i + 1



Expectation Analysis: Randomized Quicksort

E[X] =
n

∑
i=1

n

∑
j=i+1

E[Xij] E[Xij] =
2

j − i + 1

E[X] =
n

∑
i=1

2( 1
2

+
1
3

+ . . . +
1

n − i + 1 )

E[X] =
n

∑
i=1

2(Hn−1 − 1) ≤ 2n ⋅ Hn ≤ 2n ln n



Expectation Analysis: Randomized Quicksort

Summary: Randomized quick sort is  regardless of inputO(n log n)

Randomness:

Assumptions:



Probabilistic Accuracy: Fermat primality test

If  is prime and  is not divisible by , then p a p ap−1 ≡ 1 (mod p)

But… sometimes if  is composite and n an−1 ≡ 1 (mod n)

Pick a random  in the range  a [2, p − 2]



Probabilistic Accuracy: Fermat primality test
ap−1 ≡ 1 (mod p) ap−1 ≢ 1 (mod p)

 is primep

 is not primep



Probabilistic Accuracy: Fermat primality test
Let’s assume α = .5

First trial:  and prime test returns ‘prime!’ a = a0

Is our number prime?

Second trial:  and prime test returns ‘prime!’ a = a1

Third trial:  and prime test returns ‘not prime!’ a = a2

What is our false positive probability? Our false negative probability?



Probabilistic Accuracy: Fermat primality test
Summary: Randomized algorithms can also have fixed (or bounded) 
runtimes at the cost of probabilistic accuracy.

Randomness:

Assumptions:



Types of randomized algorithms
A Las Vegas algorithm is a randomized algorithm which will always 
give correct answer if run enough times but has no fixed runtime.

A Monte Carlo algorithm is a randomized algorithm which will run a 
fixed number of iterations and may give the correct answer.



Next Class: Randomized Data Structures
Sometimes a data structure can be too ordered / too structured

Randomized data structures rely on expected performance  

Randomized data structures ‘cheat’ tradeoffs!


