Data Structures and Algorithms Probability in Computer Science CS 225 November 7, 2022 Brad Solomon

Department of Computer Science

Learning Objectives

Formalize the concept of randomized algorithms

Review fundamentals of probability in computing

Distinguish the three main types of 'random' in computer science

Randomized Algorithms

A **randomized algorithm** is one which uses a source of randomness somewhere in its implementation.

A faulty list

Imagine you have a list ADT implementation *except*...

Every time you called **insert**, it would fail 50% of the time.

Quick Primes with Fermat's Primality Test

If p is prime and a is not divisible by p, then $a^{p-1} \equiv 1 \pmod{p}$

But... **sometimes** if *n* is composite and $a^{n-1} \equiv 1 \pmod{n}$

Imagine you roll a pair of six-sided dice.

The **sample space** Ω is the set of all possible outcomes.

An **event** $E \subseteq \Omega$ is any subset.

Imagine you roll a pair of six-sided dice. What is the expected value? A **random variable** is a function from events to numeric values.

The **expectation** of a (discrete) random variable is:

$$E[X] = \sum_{x \in \Omega} Pr\{X = x\} \cdot x$$

Imagine you roll a pair of six-sided dice. What is the expected value? **Linearity of Expectation:** For any two random variables X and Y, E[X + Y] = E[X] + E[Y]

Imagine you roll a pair of six-sided dice. What is the expected value? **Linearity of Expectation:** For any two random variables X and Y,

E[X+Y] = E[X] + E[Y]

$$= \sum_{x} \sum_{y} \Pr\{X = x, Y = y\}(x + y)$$

= $\sum_{x} x \sum_{y} \Pr\{X = x, Y = y\} + \sum_{y} y \sum_{x} \Pr\{X = x, Y = y\}$
= $\sum_{x} x \cdot \Pr\{X = x\} + \sum_{y} y \cdot \Pr\{Y = y\}$

Imagine you roll a pair of six-sided dice. What is the expected value? **Linearity of Expectation:** For any two random variables X and Y, E[X + Y] = E[X] + E[Y]

Randomization in Algorithms

1. Assume input data is random to estimate average-case performance

2. Use randomness inside algorithm to estimate expected running time

3. Use randomness inside algorithm to approximate solution in fixed time

Let S(n) be the average **total internal path length** over all BSTs that can be constructed by uniform random insertion of n objects

Claim: S(n) is $O(n \log n)$

N=0: N=1:

Let S(n) be the average **total internal path length** over all BSTs that can be constructed by uniform random insertion of n objects

Let S(n) be the average **total internal path length** over all BSTs that can be constructed by uniform random insertion of n objects

Let $0 \le i \le n - 1$ be the number of nodes in the left subtree.

Then for a fixed *i*, S(n) = (n - 1) + S(i) + S(n - i - 1)

Let S(n) be the **average** total internal path length **over all BSTs** that can be constructed by uniform random insertion of n objects

$$S(n) = (n-1) + \frac{1}{n} \sum_{i=0}^{n-1} S(i) + S(n-i-1)$$

$$S(n) = (n-1) + \frac{2}{n} \sum_{i=1}^{n-1} S(i)$$

$$S(n) = (n-1) + \frac{2}{n} \sum_{i=1}^{n-1} (ci \ln i)$$

$$S(n) \le (n-1) + \frac{2}{n} \int_{1}^{n} (cx \ln x) dx$$

$$S(n) \le (n-1) + \frac{2}{n} \left(\frac{cn^{2}}{2} \ln n - \frac{cn^{2}}{4} + \frac{c}{4}\right) \approx cn \ln n$$

Let S(n) be the average **total internal path length** over all BSTs that can be constructed by uniform random insertion of n objects

Since S(n) is $O(n \log n)$, if we assume we are randomly choosing a node to insert, find, or delete* then each operation takes:

Ċ

Summary: All operations are on average O(log n)

Randomness:

Assumptions:

Expectation Analysis: Randomized Quicksort In **randomized quicksort**, the selection of the pivot is random. **Claim:** The expected time is $O(n \ log \ n)$ for any input! Let *X* be the total comparisons and X_{ij} be an **indicator variable**:

 $X_{ij} = \begin{cases} 1 \text{ if } i \text{th object compared to } j \text{th} \\ 0 \text{ if } i \text{th object not compared to } j \text{th} \end{cases}$

Then...

Claim:
$$E[X_{i,j}] = \frac{2}{j-i+1}$$
.

Base Case: (N=2)

Claim:
$$E[X_{i,j}] = \frac{2}{j-i+1}$$

Induction: Assume true for all inputs of < n

$$E[X] = \sum_{i=1}^{n} \sum_{j=i+1}^{n} E[X_{ij}] \qquad E[X_{ij}] = \frac{2}{j-i+1}$$

$$E[X] = \sum_{i=1}^{n} \sum_{j=i+1}^{n} E[X_{ij}] \qquad E[X_{ij}] = \frac{2}{j-i+1}$$

$$E[X] = \sum_{i=1}^{n} 2\left(\frac{1}{2} + \frac{1}{3} + \dots + \frac{1}{n-i+1}\right)$$

$$E[X] = \sum_{i=1}^{n} 2(H_{n-1} - 1) \le 2n \cdot H_n \le 2n \ln n$$

Summary: Randomized quick sort is $O(n \log n)$ regardless of input

Randomness:

Assumptions:

Probabilistic Accuracy: Fermat primality test

Pick a random *a* in the range [2, p-2]

If p is prime and a is not divisible by p, then $a^{p-1} \equiv 1 \pmod{p}$

But... **sometimes** if *n* is composite and $a^{n-1} \equiv 1 \pmod{n}$

Probabilistic Accuracy: Fermat primality test

Let's assume $\alpha = .5$

First trial: $a = a_0$ and prime test returns 'prime!'

Second trial: $a = a_1$ and prime test returns 'prime!'

Third trial: $a = a_2$ and prime test returns 'not prime!'

Is our number prime?

What is our **false positive** probability? Our **false negative** probability?

Probabilistic Accuracy: Fermat primality test

Summary: Randomized algorithms can also have fixed (or bounded) runtimes at the cost of probabilistic accuracy.

Randomness:

Assumptions:

Types of randomized algorithms

A **Las Vegas** algorithm is a randomized algorithm which will always give correct answer if run enough times but has no fixed runtime.

A **Monte Carlo** algorithm is a randomized algorithm which will run a fixed number of iterations and may give the correct answer.

Next Class: Randomized Data Structures

Sometimes a data structure can be too ordered / too structured

Randomized data structures rely on **expected** performance

Randomized data structures 'cheat' tradeoffs!