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Learning Objectives

Formalize the concept of randomized algorithms

Review fundamentals of probability in computing

Distinguish the three main types of random’in computer science




Randomized Algorithms

A randomized algorithm is one which uses a source of randomness
somewhere in its implementation.
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A faulty list

Imagine you have a list ADT implementation except...

Every time you called insert, it would fail 50% of the time.




Quick Primes with Fermat’s Primality Test

If p is prime and a is not divisible by p, then a”~! = 1 (mod p)

But... sometimes if n is composite and "' = 1 (mod n)




Fundamentals of Probability

Imagine you roll a pair of six-sided dice.

The sample space €2 is the set of all possible outcomes.

An event £ C Q2 is any subset.




Fundamentals of Probability

Imagine you roll a pair of six-sided dice. What is the expected value?

A random variable is a function from events to numeric values.

The expectation of a (discrete) random variable is:

E[X]= ) Pr{X=x}-x
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Fundamentals of Probability

Imagine you roll a pair of six-sided dice. What is the expected value?

Linearity of Expectation: For any two random variables X and Y,
EIX+ Y] =EX]|+ E|Y]
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Fundamentals of Probability @

Imagine you roll a pair of six-sided dice. What is the expected value?

Linearity of Expectation: For any two random variables X and Y,
EIX+ Y] =EX]|+ E|Y]




Randomization in Algorithms

1. Assume input data is random to estimate average-case performance

2. Use randomness inside algorithm to estimate expected running time

3. Use randomness inside algorithm to approximate solution in fixed time




Average-Case Analysis: BST /C'D\
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Average-Case Analysis: BST

Let S(n) be the average total internal path length over all BSTs that
can be constructed by uniform random insertion of n objects

Claim: S(n) is O(n log n)
N=0: N=1:
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Average-Case Analysis: BST

Let S(n) be the average total internal path length over all BSTs that
can be constructed by uniform random insertion of n objects

Let ) <1 < n —1bethe number of nodes in the left subtree.

Thenforafixedi, S(n) =n—-1)+SGO)+Sn—-i—-1)




Average-Case Analysis: BST

Let S(n) be the average total internal path length over all BSTs that
can be constructed by uniform random insertion of n objects

n—1
S(n) = (n — 1)+%Z;S(i)+8(n—i— 1)




Average-Case Analysis: BST
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Average-Case Analysis: BST

Let S(n) be the average total internal path length over all BSTs that
can be constructed by uniform random insertion of n objects

Since S(n)is O(n log n), if we assume we are randomly choosing a
node to insert, find, or delete* then each operation takes:




Average-Case Analysis: BST

Summary: All operations are on average O(log n)

Randomness:

Assumptions:




Expectation Analysis: Randomized Quicksort
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Expectation Analysis: Randomized Quicksort
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Expectation Analysis: Randomized Quicksort

In randomized quicksort, the selection of the pivot is random.

Claim: The expected time is O(n log n) for any input!

Let X be the total comparisons and X;; be an indicator variable:

X.. =

{ 1 if ith object compared to jth
ij

0 if ith object not compared to jth

Then...




Expectation Analysis: Randomized Quicksort

Claim: E|X. .| = :
LX) j—i+1

Base Case: (N=2)




Expectation Analysis: Randomized Quicksort

Claim: E[Xl-,j] = - Induction: Assume true for all inputs of < n
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Expectation Analysis: Randomized Quicksort
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Expectation Analysis: Randomized Quicksort
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Expectation Analysis: Randomized Quicksort @

Summary: Randomized quick sortis O(n log n) regardless of input

Randomness:

Assumptions:




Probabilistic Accuracy: Fermat primality test
Pickarandom a intherange [2, p — 2]

If p is prime and a is not divisible by p, then a”~! = 1 (mod p)

But... sometimes if n is composite and ¢! = 1 (mod n)




Probabilistic Accuracy: Fermat primality test

a’~'=1 (modp) | ¢ ' #1 (modp)

pis prime

p is not prime




Probabilistic Accuracy: Fermat primality test

Let’s assume o = .5

First trial: a = a, and prime test returns ‘prime!’
Second trial: @ = a; and prime test returns ‘prime!’
Third trial: a = a, and prime test returns ‘not prime!’

Is our number prime?

What is our false positive probability? Our false negative probability?




Probabilistic Accuracy: Fermat primality test @

Summary: Randomized algorithms can also have fixed (or bounded)
runtimes at the cost of probabilistic accuracy.

Randomness:

Assumptions:




Types of randomized algorithms

A Las Vegas algorithm is a randomized algorithm which will always
give correct answer if run enough times but has no fixed runtime.

A Monte Carlo algorithm is a randomized algorithm which will run a
fixed number of iterations and may give the correct answer.




Next Class: Randomized Data Structures

Sometimes a data structure can be too ordered / too structured

Randomized data structures rely on expected performance

Randomized data structures ‘cheat’ tradeoffs!




