
CS 225
Data Structures

October 19 – Graphs
G Carl Evans

In Review: Data Structures

Array
- Sorted Array
- Unsorted Array

- Stacks
- Queues
- Priority Queues

- Heaps
- Disjoint Sets

- UpTrees

Linked
- Doubly Linked List
- Trees

- BTree
- Binary Tree

- Huffman Encoding
- kd-Tree
- AVL Tree

The Internet 2003
The OPTE Project (2003)
Map of the entire internet; nodes
are routers; edges are connections.

HeapifyUp
BasicBlock
Graph

Generated using tools at
https://godbolt.org

https://godbolt.org/

Who’s the real main character in Shakespearean tragedies?
Martin Grandjean (2016)
https://www.pbs.org/newshour/arts/whos-the-real-main-character-in-
shakespearen-tragedies-heres-what-the-data-say

https://www.pbs.org/newshour/arts/whos-the-real-main-character-in-shakespearen-tragedies-heres-what-the-data-say

Conflict-Free Final Exam Scheduling Graph
Unknown Source
Presented by Cinda Heeren, 2016

“Rush Hour” Solution
Unknown Source
Presented by Cinda Heeren, 2016

Class Hierarchy At University of
Illinois Urbana-Champaign
A. Mori, W. Fagen-Ulmschneider, C. Heeren

Graph of every course at UIUC; nodes are
courses, edges are prerequisites

http://waf.cs.illinois.edu/discovery/class_hi
erarchy_at_illinois/

http://waf.cs.illinois.edu/discovery/class_hierarchy_at_illinois/

MP Collaborations in CS 225
Unknown Source
Presented by Cinda Heeren, 2016

“Rule of 7”
Unknown Source
Presented by Cinda Heeren, 2016

This graph can be used to quickly calculate
whether a given number is divisible by 7.

1. Start at the circle node at the top.
2. For each digit d in the given number, follow
d blue (solid) edges in succession. As you
move from one digit to the next, follow 1 red
(dashed) edge.
3. If you end up back at the circle node, your
number is divisible by 7.

3703

“Stanford Bunny”
Greg Turk and Mark Levoy (1994)

Graphs

To study all of these structures:
1. A common vocabulary
2. Graph implementations
3. Graph traversals
4. Graph algorithms

Graph Vocabulary

G = (V, E)
|V| = n
|E| = m

G1

G2
G3

Incident Edges:
I(v) = { {x, v} in E }

Degree(v): |I|

Adjacent Vertices:
A(v) = { x : {x, v} in E }

Path(G2): Sequence of vertices
connected by edges

Cycle(G1): Path with a
common begin and end vertex
with at least 3 vertices.

Simple Graph(G): A graph with
no self loops or multi-edges.

(2, 5)

Graph Vocabulary

G = (V, E)
|V| = n
|E| = m

G1

G2
G3

Subgraph(G):
G’ = (V’, E’):

V’ ∈ V, E’ ∈ E, and
(u, v) ∈ E’ à u ∈ V’, v ∈ V’

Complete subgraph(G)
Connected subgraph(G)
Connected component(G)
Acyclic subgraph(G)
Spanning tree(G)

(2, 5)

Running times are often reported by n, the number of
vertices, but often depend on m, the number of edges.

How many edges? Minimum edges:
Not Connected:

Connected*:

Maximum edges:
Simple:

Not simple:

XU

V

W

Z

Y

a

c

b

e

d

f
g

h

Graph ADT Functions:
- insertVertex(K key);
- insertEdge(Vertex v1, Vertex v2, K key);

- removeVertex(Vertex v);
- removeEdge(Vertex v1, Vertex v2);

- incidentEdges(Vertex v);
- areAdjacent(Vertex v1, Vertex v2);

- origin(Edge e);
- destination(Edge e);

Data:
- Vertices
- Edges
- Some data structure

maintaining the
structure between
vertices and edges.

X

V

W

Z

Y

b

e
d

f
g

h

Graph Implementation Idea

v

u

w

a c
b

z
d

Graph Implementation: Edge List

v

u

w

a c
b

z
d

Vertex Collection:

Edge Collection:u

v

w

z

u v a

v w b

u w c

w z d

Graph Implementation: Edge List

v

u

w

a c
b

z
d

insertVertex(K key):

removeVertex(Vertex v):u

v

w

z

u v a

v w b

u w c

w z d

Graph Implementation: Edge List

v

u

w

a c
b

z
d

incidentEdges(Vertex v):

areAdjacent(Vertex v1, Vertex v2):

G.incidentEdges(v1).contains(v2)

u

v

w

z

u v a

v w b

u w c

w z d

Graph Implementation: Edge List

v

u

w

a c
b

z
d

insertEdge(Vertex v1, Vertex v2, K key):

u

v

w

z

u v a

v w b

u w c

w z d

Graph Implementation: Adjacency Matrix

v

u

w

a c
b

z
d

insertVertex(K key);
removeVertex(Vertex v);
areAdjacent(Vertex v1, Vertex v2);
incidentEdges(Vertex v);

u

v

w

z

a

b

c

d

u v w z

u

v

w

z

