CS 225

Data Structures

October 17 – Disjoint Sets with Path Compression G Carl Evans

Disjoint Sets

0	1	2	3	4	5	6	7	8	9
4	8	5	-1	-1	-1	3	-1	4	5

Disjoint Sets – Smart Union

We will show the height of the tree is: log(n).

Rank

Base

New UpTrees have Rank of 0

When you join two UpTrees with rank r the root of the merged tree will have a root changed to r + 1

Note: without path compression rank is height

Union by Rank - Proof

Much like before we will show that in a tree with a root of rank r there are $nodes(r) \ge 2^r$ Base Case: UpTree of rank = 0 has 1 node $2^0 = 1$

Inductive Hypothesis: for all trees of ranks k, k < r, $nodes(k) \ge 2^k$ A root of rank r is created by merging two trees of rank r - 1by IH each of those trees have $nodes(r - 1) \ge 2^{r-1}$ so, tree a of rank r has $nodes(r) \ge 2 \times 2^{r-1} \ge 2^r$

Taking the inverse, we get a height of $O(\log(n))$

Path Compression (rank != height)

Rank Properties

1. If x is not a root node, then rank(x) < rank(parent(x)).

2. If x is not a root node, then rank(x) will never change again.

Rank Properties

3. If parent(x) changes, then rank(parent(x)) <
rank(parent'(x)).</pre>

4. min(nodes) in a set with a root of rank $r \ge 2^r$.

This was shown before, and path compression does not change the number of nodes in a set.

Rank Properties

5. Since there are only n nodes the highest possible rank is $\lfloor \log n \rfloor$.

6. For any integer r, there are at most $n/2^r$ nodes of rank $\geq r$.

Amortized

Find needs to be amortized since running the same find multiple times will have different runtimes.

• Find on root and immediate children of root

• Find on everything thing else

Iterated Logarithm Function (log^*n)

 log^*n is piecewise defined as 0 if $n \le 1$ otherwise $1 + log^*(\log n)$

Buckets

- Put every non-root node in a bucket by rank
- The total number of buckets is O(log*n)
- Max nodes in a bucket is n divided by lower bound of the next bucket

Ranks	Bucket		
0	0		
1	1		
2 - 3	2		
4 - 15	3		
16 – 65535	4		
$65536 - 2^{65536} - 1$	5		

Find(x) How to charge the work

The work of find(x) is the steps taken on the path from a node x to the root of the uptree containing x

Case 1: The step from u to v moves from one bucket to another we charge that to x.

Find(x) How to charge the work

Case 2: The step from u to v and u and v are in the same bucket

- 1. The rank of u will never change
- 2. Every charge will increase the rank of parent

How many total charges of this kind in a bucket?

Final Result

Even Better

In case that seems to slow tightest bound is

$\Theta(m \, \alpha(m, n))$

Where $\alpha(m, n)$ is the inverse Ackermann function which grows much slower than log*n.

Proof well outside this class.