CS 225

Data Structures

October 17 — Disjoint Sets with Path

Compression
G Carl Evans

Disjoint Sets

@

Disjoint Sets — Smart Union

Union by 01123
height/rank 6 6 | 6 | 8

Union by size

4 5 7 8 10 | 11

-4 | 10 -3 7 4 5
0 1 2 3 4 5 7 8 10 | 11
6 6 6 8 -8 | 10 -4 7 4 5

We will show the height of the tree is: log(n).

Idea: Keep the height of
the tree as small as
possible.

Idea: Minimize the
number of nodes that
increase in height

Rank

Base
New UpTrees have Rank of O

When you join two UpTrees with rank r the root of the merged
tree will have a root changedtor+1

Note: without path compression rank is height

Union by Rank - Proof

Much like before we will show that in a tree with a root of rank r there are
nodes(r) = 27
Base Case: UpTree of rank =0 has 1 node 2° = 1

Inductive Hypothesis: for all trees of ranks k, k < r, nodes(k) > 2%

A root of rank r is created by merging two trees of rank r — 1
by IH each of those trees have nodes(r — 1) > 271
so, tree a of rank r has nodes(r) = 2x2""1 > 27

Taking the inverse, we get a height of 0 (log(n))

Path Compression (rank != height)

Rank Properties

1. If x is not a root node, then rank(x) < rank(parent(x)).

2. If x is not a root node, then rank (x) will never change again.

Rank Properties

3. If parent(x) changes, then rank(parent(x)) <
rank(parent’'(x)).

4. min(nodes) in a set with a root of rankr > 27.

This was shown before, and path compression does not change the number of
nodes in a set.

Rank Properties

5. Since there are only n nodes the highest possible rank is [log n|.

6. For any integer r, there are at most n/2" nodes of rank > r.

Amortized

Find needs to be amortized since running the same find multiple times
will have different runtimes.

* Find on root and immediate children of root

* Find on everything thing else

lterated Logarithm Function (log™n)

log™n is piecewise defined as
0Oifn<1

otherwise
1+ log™(logn)

Buckets

* Put every non-root node in a bucket by rank Ranks |Bucket |
0

16 — 65535
65536 — 265536 _ 1

0

* The total number of buckets is O(log*n) 1 1
2-3 2

4-15 3

4

5

* Max nodes in a bucket is n divided by lower
bound of the next bucket

Find(x) How to charge the work

The work of find(x) is the steps taken on the path from a node x to the
root of the uptree containing x

Case 1: The step from u to v moves from one bucket to another we
charge that to x.

Find(x) How to charge the work

Case 2: The step from u to vand u and v are in the same bucket
1. The rank of u will never change
2. Every charge will increase the rank of parent

How many total charges of this kind in a bucket?

Final Result

Even Better

In case that seems to slow tightest bound is

O(m a(m,n))

Where a(m, n) is the inverse Ackermann function which grows much
slower than log™n.

Proof well outside this class.

