
CS 225
Data Structures

October 17 – Disjoint Sets with Path
Compression

G Carl Evans

Disjoint Sets

2 5 9 7 0 1 4 8 3 6

1 2 3 4 5 6 70

8 5 -1 -1 -1 3 -14

8 9

4 5

0

1

2

345

6

7

8
9

Disjoint Sets – Smart Union

0 1 2 3

4

5

6

7

8 9 10

11

1 2 3 4 5 6 70

6 6 8 -4 10 7 -36

8 9

7 7

10 11

4 5

1 2 3 4 5 6 70

6 6 8 -8 10 7 -46

8 9

7 7

10 11

4 5

Union by
height/rank

Union by size

Idea: Keep the height of
the tree as small as
possible.

Idea: Minimize the
number of nodes that
increase in height

We will show the height of the tree is: log(n).

Rank

Base
New UpTrees have Rank of 0

When you join two UpTrees with rank r the root of the merged
tree will have a root changed to r + 1

Note: without path compression rank is height

Union by Rank - Proof

Much like before we will show that in a tree with a root of rank 𝑟 there are
𝑛𝑜𝑑𝑒𝑠(𝑟) ≥ 2!
Base Case: UpTree of rank = 0 has 1 node 2" = 1

Inductive Hypothesis: for all trees of ranks 𝑘, 𝑘 < 𝑟, 𝑛𝑜𝑑𝑒𝑠 𝑘 ≥ 2#

A root of rank 𝑟 is created by merging two trees of rank 𝑟 − 1
by IH each of those trees have 𝑛𝑜𝑑𝑒𝑠 𝑟 − 1 ≥ 2!$%

so, tree a of rank 𝑟 has 𝑛𝑜𝑑𝑒𝑠 𝑟 ≥ 2×2!$% ≥ 2!

Taking the inverse, we get a height of 𝑂(log 𝑛)

Path Compression (rank != height)

1

2

3

6

7

8

9

4

5

10

11

1

2

3

6 7

8

9
4

5

10

11

Rank Properties

1. If 𝑥 is not a root node, then 𝑟𝑎𝑛𝑘 𝑥 < 𝑟𝑎𝑛𝑘(𝑝𝑎𝑟𝑒𝑛𝑡 𝑥).

2. If 𝑥 is not a root node, then 𝑟𝑎𝑛𝑘 𝑥 will never change again.

Rank Properties

3. If 𝑝𝑎𝑟𝑒𝑛𝑡 𝑥 changes, then 𝑟𝑎𝑛𝑘(𝑝𝑎𝑟𝑒𝑛𝑡 𝑥) <
𝑟𝑎𝑛𝑘(𝑝𝑎𝑟𝑒𝑛𝑡′ 𝑥).

4. min(nodes) in a set with a root of rank 𝑟 ≥ 2!.
This was shown before, and path compression does not change the number of
nodes in a set.

Rank Properties

5. Since there are only 𝑛 nodes the highest possible rank is log 𝑛 .

6. For any integer 𝑟, there are at most 𝑛/2! nodes of rank ≥ 𝑟.

Amortized

Find needs to be amortized since running the same find multiple times
will have different runtimes.

• Find on root and immediate children of root

• Find on everything thing else

Iterated Logarithm Function (𝑙𝑜𝑔∗𝑛)

𝑙𝑜𝑔∗𝑛 is piecewise defined as
0 if 𝑛 ≤ 1

otherwise
1 + 𝑙𝑜𝑔∗(log 𝑛)

Buckets

Ranks Bucket

0 0

1 1

2 - 3 2

4 - 15 3

16 – 65535 4

65536 – 2!""#! − 1 5

• Put every non-root node in a bucket by rank

• The total number of buckets is O(log*n)

• Max nodes in a bucket is n divided by lower
bound of the next bucket

Find(x) How to charge the work

The work of find(x) is the steps taken on the path from a node x to the
root of the uptree containing x

Case 1: The step from u to v moves from one bucket to another we
charge that to x.

Find(x) How to charge the work

Case 2: The step from u to v and u and v are in the same bucket

1. The rank of u will never change

2. Every charge will increase the rank of parent

How many total charges of this kind in a bucket?

Final Result

Even Better

In case that seems to slow tightest bound is

Θ(𝑚 𝛼 𝑚, 𝑛)

Where 𝛼(𝑚, 𝑛) is the inverse Ackermann function which grows much
slower than log*n.

Proof well outside this class.

