CS 225

Data Structures

October 17 - Disjoint Sets with Path Compression

G Carl Evans

Disjoint Sets

0	1	2	3	4	5	6	7	8	9
4	8	5	-1	-1	-1	3	-1	4	5

Disjoint Sets - Smart Union

Union by height/rank	0	1	2	3	4	5	6	7	8	9	10	11
	6	6	6	8	-4	10	7	-3	7	7	4	5
Union by size	0	1	2	3	4	5	6	7	8	9	10	11
	6	6	6	8	-8	10	7	-4	7	7	4	5

Idea: Keep the height of the tree as small as possible.

dea: Minimize the number of nodes that
increase in height

We will show the height of the tree is: $\log (n)$.

Rank

Base

New UpTrees have Rank of 0

When you join two UpTrees with rank r the root of the merged tree will have a root changed to $r+1$

Note: without path compression rank is height

Union by Rank - Proof

Much like before we will show that in a tree with a root of rank r there are $\operatorname{nodes}(r) \geq 2^{r}$
Base Case: UpTree of rank $=0$ has 1 node $2^{0}=1$

Inductive Hypothesis: for all trees of ranks $k, k<r, \operatorname{nodes}(k) \geq 2^{k}$
A root of rank r is created by merging two trees of rank $r-1$
by IH each of those trees have nodes $(r-1) \geq 2^{r-1}$
so, tree a of rank r has $\operatorname{nodes}(r) \geq 2 \times 2^{r-1} \geq 2^{r}$

Taking the inverse, we get a height of $O(\log (n))$

Path Compression (rank != height)

Rank Properties

1. If x is not a root node, then $\operatorname{rank}(x)<\operatorname{rank}(\operatorname{parent}(x))$.
2. If x is not a root node, then $\operatorname{rank}(x)$ will never change again.

Rank Properties

3. If $\operatorname{parent}(x)$ changes, then $\operatorname{rank}(\operatorname{parent}(x))<$ $\operatorname{rank}\left(\right.$ parent $\left.^{\prime}(x)\right)$.
4. \min (nodes) in a set with a root of rank $r \geq 2^{r}$. This was shown before, and path compression does not change the number of nodes in a set.

Rank Properties

5. Since there are only n nodes the highest possible rank is $\lfloor\log n\rfloor$.
6. For any integer r, there are at most $n / 2^{r}$ nodes of rank $\geq r$.

Amortized

Find needs to be amortized since running the same find multiple times will have different runtimes.

- Find on root and immediate children of root
- Find on everything thing else

Iterated Logarithm Function $\left(\log ^{*} n\right)$
$\log ^{*} n$ is piecewise defined as

$$
0 \text { if } n \leq 1
$$

otherwise

$$
1+\log ^{*}(\log n)
$$

Buckets

- Put every non-root node in a bucket by rank
- The total number of buckets is $\mathrm{O}\left(\log ^{*} \mathrm{n}\right)$
- Max nodes in a bucket is n divided by lower bound of the next bucket

Ranks	Bucket
0	0
1	1
$2-3$	2
$4-15$	3
$16-65535$	4
$65536-2^{65536}-1$	5

Find(x) How to charge the work

The work of find (x) is the steps taken on the path from a node x to the root of the uptree containing x

Case 1: The step from u to v moves from one bucket to another we charge that to x.

Find(x) How to charge the work

Case 2: The step from u to v and u and v are in the same bucket

1. The rank of u will never change
2. Every charge will increase the rank of parent

How many total charges of this kind in a bucket?

Final Result

Even Better

In case that seems to slow tightest bound is

$$
\Theta(m \alpha(m, n))
$$

Where $\alpha(m, n)$ is the inverse Ackermann function which grows much slower than $\log ^{*} \mathrm{n}$.

Proof well outside this class.

