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Disjoint Sets – Smart Union

0 1 2 3

4

5

6

7

8 9 10

11

1 2 3 4 5 6 70

6 6 8 -4 10 7 -36

8 9

7 7

10 11

4 5

1 2 3 4 5 6 70

6 6 8 -8 10 7 -46

8 9

7 7

10 11

4 5

Union by 
height/rank

Union by size

Idea: Keep the height of 
the tree as small as 
possible.

Idea: Minimize the 
number of nodes that 
increase in height

We will show the height of the tree is: log(n). 



Rank

Base
New UpTrees have Rank of 0

When you join two UpTrees with rank r the root of the merged
tree will have a root changed to r + 1

Note: without path compression rank is height



Union by Rank - Proof

Much like before we will show that in a tree with a root of rank 𝑟 there are 
𝑛𝑜𝑑𝑒𝑠(𝑟) ≥ 2!
Base Case: UpTree of rank = 0 has 1 node 2" = 1

Inductive Hypothesis: for all trees of ranks 𝑘, 𝑘 < 𝑟, 𝑛𝑜𝑑𝑒𝑠 𝑘 ≥ 2#

A root of rank 𝑟 is created by merging two trees of rank 𝑟 − 1
by IH each of those trees have 𝑛𝑜𝑑𝑒𝑠 𝑟 − 1 ≥ 2!$%

so, tree a of rank 𝑟 has 𝑛𝑜𝑑𝑒𝑠 𝑟 ≥ 2×2!$% ≥ 2!

Taking the inverse, we get a height of 𝑂(log 𝑛 )



Path Compression (rank != height)
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Rank Properties

1. If 𝑥 is not a root node, then 𝑟𝑎𝑛𝑘 𝑥 < 𝑟𝑎𝑛𝑘(𝑝𝑎𝑟𝑒𝑛𝑡 𝑥 ).

2. If 𝑥 is not a root node, then 𝑟𝑎𝑛𝑘 𝑥 will never change again.



Rank Properties

3. If 𝑝𝑎𝑟𝑒𝑛𝑡 𝑥 changes, then 𝑟𝑎𝑛𝑘(𝑝𝑎𝑟𝑒𝑛𝑡 𝑥) <
𝑟𝑎𝑛𝑘(𝑝𝑎𝑟𝑒𝑛𝑡′ 𝑥 ).

4. min(nodes) in a set with a root of rank 𝑟 ≥ 2!.
This was shown before, and path compression does not change the number of 
nodes in a set.



Rank Properties

5. Since there are only 𝑛 nodes the highest possible rank is log 𝑛 .

6. For any integer 𝑟, there are at most 𝑛/2! nodes of rank ≥ 𝑟.



Amortized 

Find needs to be amortized since running the same find multiple times 
will have different runtimes.

• Find on root and immediate children of root

• Find on everything thing else



Iterated Logarithm Function (𝑙𝑜𝑔∗𝑛)

𝑙𝑜𝑔∗𝑛 is piecewise defined as
0 if 𝑛 ≤ 1

otherwise
1 + 𝑙𝑜𝑔∗(log 𝑛)



Buckets

Ranks Bucket

0 0

1 1

2 - 3 2

4 - 15 3

16 – 65535 4

65536 – 2!""#! − 1 5

• Put every non-root node in a bucket by rank

• The total number of buckets is O(log*n)

• Max nodes in a bucket is n divided by lower 
bound of the next bucket



Find(x) How to charge the work

The work of find(x) is the steps taken on the path from a node x to the 
root of the uptree containing x

Case 1: The step from u to v moves from one bucket to another we 
charge that to x.



Find(x) How to charge the work

Case 2: The step from u to v and u and v are in the same bucket

1. The rank of u will never change

2. Every charge will increase the rank of parent

How many total charges of this kind in a bucket?



Final Result



Even Better

In case that seems to slow tightest bound is

Θ(𝑚 𝛼 𝑚, 𝑛 )

Where 𝛼(𝑚, 𝑛) is the inverse Ackermann function which grows much 
slower than log*n.

Proof well outside this class.


