

Data Structures

October 14 – Disjoint Sets and Iterators G Carl Evans

Iterators

Suppose we want to look through every element in our data structure:

Iterators encapsulated access to our data:

Cur. Location	Cur. Data	Next
ListNode *		
size_t		
<pre>stack<node *=""></node></pre>		

Disjoint Sets

0	1	2	3	4	5	6	7	8	9
4	8	5	-1	-1	-1	3	-1	4	5

Disjoint Sets – Smart Union

We will show the height of the tree is: log(n).

Union by Size

To show that every tree in a disjoint set data structure using union by size has a height of at most O(log n) we will show that the inverse.

Base Case

Inductive Hypothesis

Union by Size

Case 1

Union by Size

Case 2

Union by Height - Rank

Base

New UpTrees have Rank =

When you join two UpTrees

Union by Rank

1. For all non-root nodes *x*, *rank(x) < rank(parent(x))*

2. Rank only changes for roots and only up

Union by Rank

Much like before we will show the min(nodes) in a tree with a root of rank $k \ge 2^k$ Base Case

IH

Union by Rank

For any integer $r \ge 0$, there are $\le n/2^r$ nodes with rank r.

Why?

Path Compression

