
CS 225
Data Structures

October 12 – Disjoint Sets and kD-tree
G Carl Evans



Implementation #2

•We will continue to use an array where the index is the 
key

• The value of the array is:
• -1, if we have found the representative element
• The index of the parent, if we haven’t found the rep. element

•We will call theses UpTrees:

1 2 30

-1 -1 -1-1

0 1 2 3



Disjoint Sets

2  5  9 7 0  1  4  8 3  6

1 2 3 4 5 6 70 8 9

0

1

2

345

6

7

8
9



Disjoint Sets – Smart Union

0 1 2 3

4

5

6

7

8 9 10

11

1 2 3 4 5 6 70

6 6 8 10 76

8 9

7 7

10 11

4 5

1 2 3 4 5 6 70

6 6 8 10 76

8 9

7 7

10 11

4 5

Union by height

Union by size

Idea: Keep the height of 
the tree as small as 
possible.

Idea: Minimize the 
number of nodes that 
increase in height

Both guarantee the height of the tree is: _____________. 



Disjoint Sets Find
int DisjointSets::find(int i) {
if ( s[i] < 0 ) { return i; }
else { return find( s[i] ); } 

}

1
2
3
4

void DisjointSets::unionBySize(int root1, int root2) {
int newSize = arr_[root1] + arr_[root2];

// If arr_[root1] is less than (more negative), it is the larger set;
// we union the smaller set, root2, with root1.
if ( arr_[root1] < arr_[root2] ) {
arr_[root2] = root1;
arr_[root1] = newSize;

}

// Otherwise, do the opposite:
else {
arr_[root1] = root2;
arr_[root2] = newSize;

}
}

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16



Path Compression

1

2

3

6

7

8

9

4

5

10

11



MP Mosaics and One More Tree



kD-Trees

p1

p4

p3

p7

p5

p2



kD-Trees

p1

p4

p3

p7

p5

p2



kD-Trees

p1

p4

p3

p7

p5

p2



kD-Tree Constructor
How to construct your own kD-tree?



kD-Tree

● Data structures (trees) which are 
often used to find the nearest 
neighbor of a k-dimensional point
○ Why you should care: actually very 

applicable to real world scenarios!

● kD-Trees are used to organize 
Points in k-dimensional space, for 
any k > 0



kD-Tree Constructor



Nearest Neighbors
Some suggestions to keep in mind



Nearest Neighbor - demo



Nearest Neighbor - demo



Nearest Neighbor - demo



Nearest Neighbor - demo



Nearest Neighbor - demo
Backtracking: start recursing backwards -- store “best” possibility as you trace back



Nearest Neighbor - demo



Nearest Neighbor - demo
On ties, use smallerDimVal to determine which point remains curBest



Nearest Neighbor - demo



Nearest Neighbor - demo


