CS 225

Data Structures

October 7 — Heaps and Priority Queues
G Carl Evans

(min)Heap °

A complete binary tree T
is @ min-heap if:

(s, (5
eT={} or | @ ° 0 @
o T Tk ere e o) () () (a2) (a0)

{T, Tg} and {T, Tg} are
min-heaps.

(min)Heap

15

buildHeap

buildHeap — sorted array

U

L

D

H

| alefwfofw] | | |

buildHeap - heapifyUp

buildHeap - heapifyDown

buildHeap

1. Sort the array —it’s a heap!

2. 1| template <class T>
2 | void Heap<T>: :buildHeap () {
3 for (unsigned i = 2; i <= size ; i++) {
4 heapifyUp (i) ;
5 }
61|}

3 1| template <class T>

* 2 | void Heap<T>: :buildHeap() {

3 for (unsigned i = parent(size); i > 0; i--) {
4 heapifyDown (i) ;
5 }
61}

Proving buildHeap Running Time

Theorem: The running time of buildHeap on array of size n
IS:

Strategy:

Proving buildHeap Running Time

S(h): Sum of the heights of all nodes in a complete tree of

height h. e

s0- (v o
o oW @ W

S(h) =

Proving buildHeap Running Time

Proof the recurrence:
Base Case:

General Case:

Proving buildHeap Running Time

From S(h) to RunningTime(n):
S(h):

Since h < 1g(n):

RunningTime(n) <

Running Time?

Why do we care about another sort?

Disjoint Sets

Key ldeas:
* Each element exists in exactly one set.

* Every set is an equitant representation.
* Mathematically: 4 € [0]; = 8 € [0]
* Programmatically: find(4) == find(8)

Disjoint Sets ADT

* Maintain a collection S = {sg, Sy, ... S}
* Each set has a representative member.

* APl: void makeSet(const T & t);

void union(const T & k1, const T & k2);
T & find(const T & k) ;

Implementation #1

Cee > 22 D>

Find(k):

Union(k1, k2):

YOU EXPECTED/A NEW DATA STRUCTURE

\
T

-

0
. BUTITWAS ME);{‘IHE ALLALONG
imgfiip/eom /

Implementation #2

* We will continue to use an array where the index is the
key

* The value of the array is:
-1, if we have found the representative element
* The index of the parent, if we haven’t found the rep. element

* We will call theses UpTrees: @ @ @ @
0|1 |2]3

1]-1|-1)| -1

UpTrees

Yo

Disjoint Sets

@

Disjoint Sets Find

int DisjointSets::find () ({
if (s[i] < 0) { return i; }
else { return find(s[i]), }

}

w»WN R

Running time?

What is the ideal UpTree?

Disjoint Sets Union

void DisjointSets::union(int rl, int r2) {

= W N

}

Disjoint Sets — Union

(o)

10

11

10

~N

Disjoint Sets — Smart Union

Union by height

(o)

10

11

10

~N

Idea: Keep the height of
the tree as small as

possible.

Disjoint Sets — Smart Union

Unionbyheight | 0 | 1 | 2 | 3 | 4|5 |6 | 7 | 8 | 9 |10 11 |Idea:Keepthe height of
the tree as small as
6 | 6 | 6 8 10 | 7 7 7 | 4| 5 | possible.
. . 0 1 2 3 4 5 6 7 8 9 | 10 | 11 | Idea: Minimize the
Union by size number of nodes that
6 | 6 | 6 8 10 | 7 7 |7 | 4 | 5 |increase in height

Both guarantee the height of the tree is:

D

sjoint Sets Find

1| int DisjointSets::find(int i) {

2 if (s[i] < 0) { return i; }

3 else { return find(s[i]); }

41}

1 | void DisjointSets: :unionBySize (int rootl, int root2) ({
2 int newSize = arr [rootl] + arr [root2];

3

4 // If arr [rootl] is less than (more negative), it is the larger set;
5 // we union the smaller set, root2, with rootl.

6 if (arr [rootl] < arr [root2]) {

7 arr [root2] = rootl;

8 arr [rootl] = newSize;

9 }
10
11 // Otherwise, do the opposite:
12 else {
13 arr [rootl] = root2;
14 arr [root2] = newSize;
15 }

Path Compression

Disjoint Sets Analysis

The iterated log function:
The number of times you can take a log of a number.

log*(n) =
0) ,n<1
1+ log*(log(n)),n>1

What is Ig*(25°°36)?

Disjoint Sets Analysis

In an Disjoint Sets implemented with smart unions and
path compression on find:

Any sequence of m union and find operations result in the
worse case running time of O(),
where n is the number of items in the Disjoint Sets.

