CS 225

Data Structures

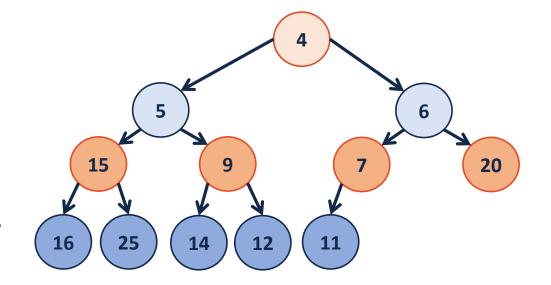
October 7 – Heaps and Priority Queues

G Carl Evans

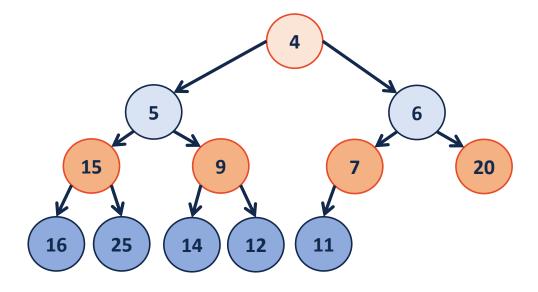
(min)Heap

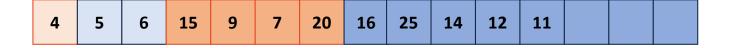
A complete binary tree T is a min-heap if:

- T = {} or
- T = {r, T_L, T_R}, where r is less than the roots of {T_L, T_R} and {T_L, T_R} are min-heaps.

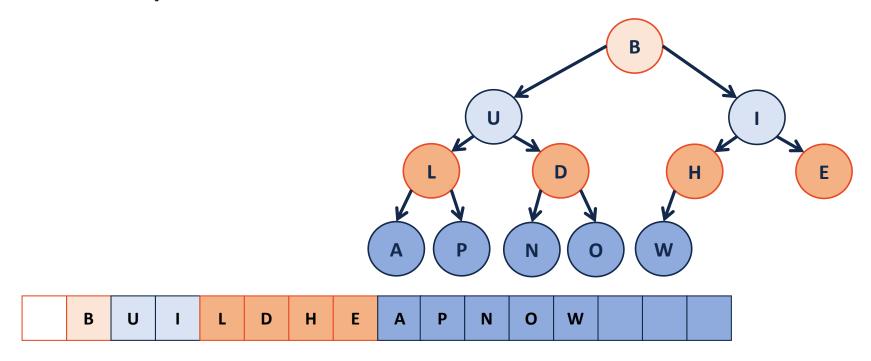


(min)Heap

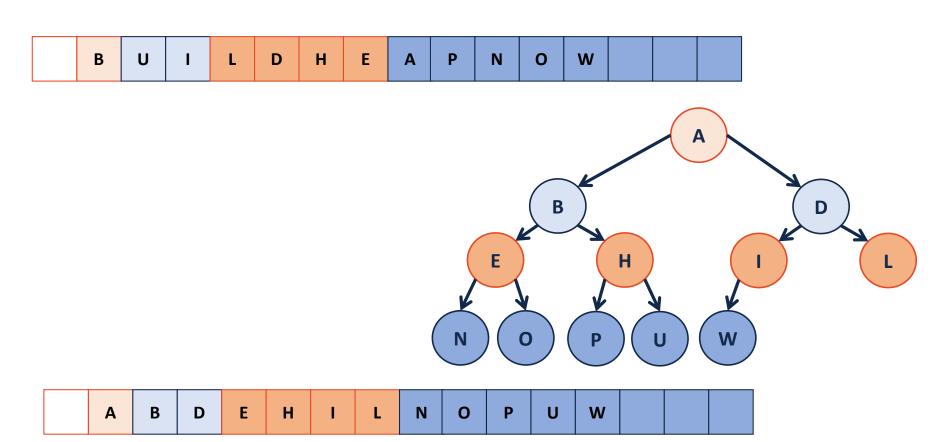




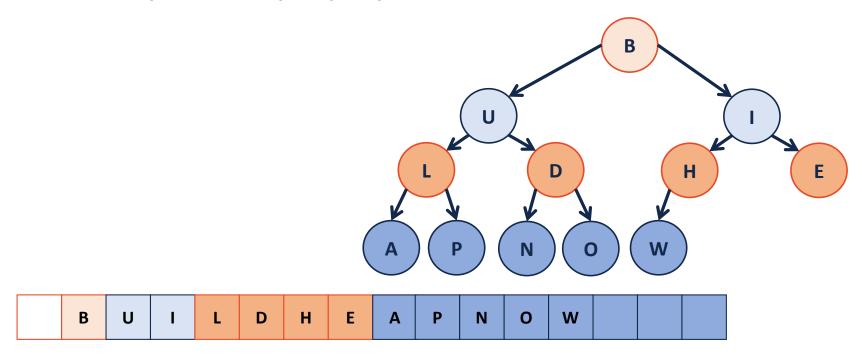
buildHeap



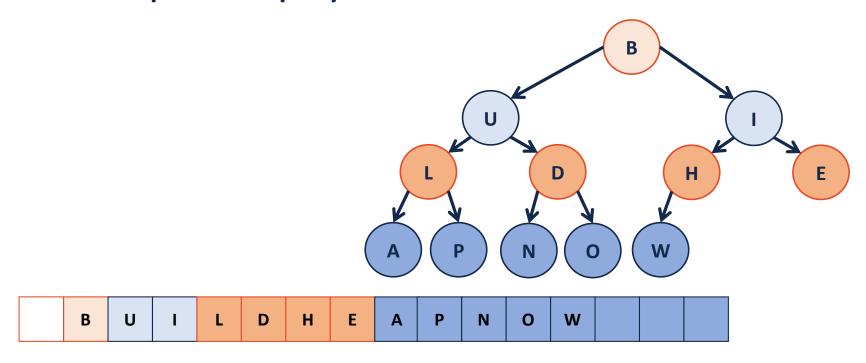
buildHeap – sorted array



buildHeap - heapifyUp



buildHeap - heapifyDown



buildHeap

1. Sort the array – it's a heap!

U

```
1 template <class T>
    void Heap<T>::buildHeap() {
3    for (unsigned i = parent(size); i > 0; i--) {
        heapifyDown(i);
     }
6 }
```

B U I L D H E A P N O W

Theorem:	The r	unnin	g time	of bu	uildHea	ap on	array	of	size ı	N
is:	•									

Strategy:

-

-

_

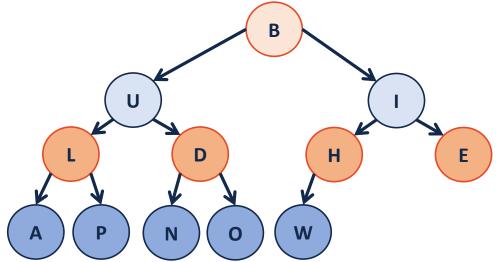
S(h): Sum of the heights of all nodes in a complete tree of

height **h**.

$$S(0) =$$

$$S(1) =$$

$$S(h) =$$



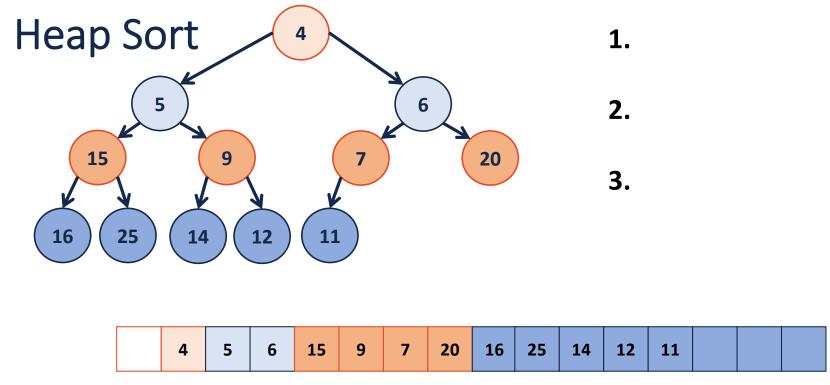
Proof the recurrence:

Base Case:

General Case:

```
From S(h) to RunningTime(n):
   S(h):

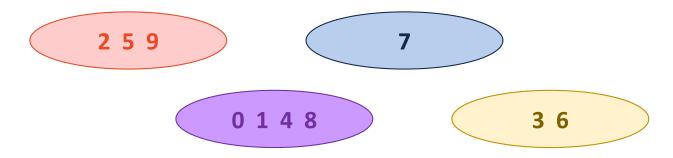
Since h ≤ lg(n):
   RunningTime(n) ≤
```



Running Time?

Why do we care about another sort?

Disjoint Sets



Key Ideas:

- Each element exists in exactly one set.
- Every set is an equitant representation.
 - Mathematically: $4 \in [0]_R \rightarrow 8 \in [0]_R$
 - Programmatically: find(4) == find(8)

Disjoint Sets ADT

- Maintain a collection $S = \{s_0, s_1, ... s_k\}$
- Each set has a representative member.

```
• API: void makeSet(const T & t);

void union(const T & k1, const T & k2);

T & find(const T & k);
```

Implementation #1

0	1	2	3	4	5	6	7

Find(k):

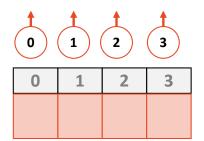
Union(k1, k2):

Implementation #2

- We will continue to use an array where the index is the key
- The value of the array is:
 - -1, if we have found the representative element
 - The index of the parent, if we haven't found the rep. element
- We will call theses **UpTrees**:

0	1 (2	3
0	1	2	3
-1	-1	-1	-1

UpTrees

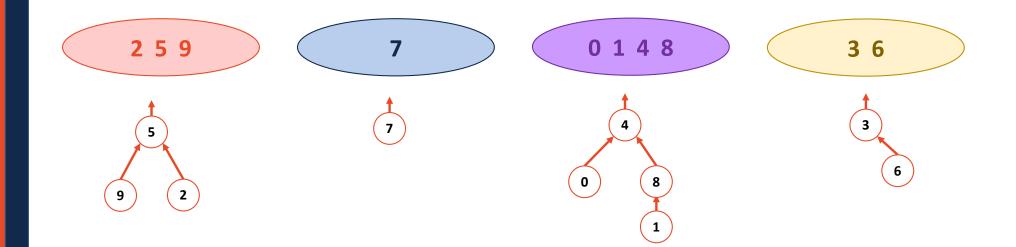


0	1	2	3

0	1	2	3

0	1	2	3

Disjoint Sets



0	1	2	3	4	5	6	7	8	9
4	8	5	6	-1	-1	-1	-1	4	5

Disjoint Sets Find

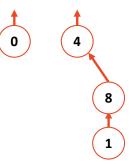
```
1 int DisjointSets::find() {
2   if ( s[i] < 0 ) { return i; }
3   else { return _find( s[i] ); }
4 }</pre>
```

Running time?

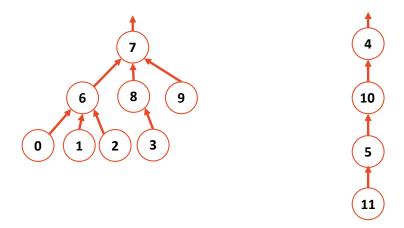
What is the ideal UpTree?

Disjoint Sets Union

```
1 void DisjointSets::union(int r1, int r2) {
2
3
4 }
```

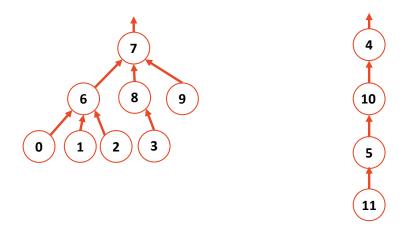


Disjoint Sets – Union



0	1	2	3	4	5	6	7	8	9	10	11
6	6	6	8	-1	10	7	-1	7	7	4	5

Disjoint Sets – Smart Union

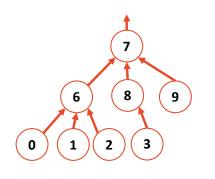


Union by height

0	1	2	3	4	5	6	7	8	9	10	11
6	6	6	8		10	7		7	7	4	5

Idea: Keep the height of the tree as small as possible.

Disjoint Sets – Smart Union





Union by height

ľ												
	6	6	6	8		10	7		7	7	4	5
ļ	0	1	2	3	4	5	6	/	8	9	10	11

Idea: Keep the height of the tree as small as possible.

Union by size

0	1	2	3	4	5	6	7	8	9	10	11
6	6	6	8		10	7		7	7	4	5

Idea: Minimize the number of nodes that increase in height

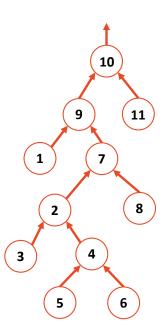
Both guarantee the height of the tree is: _____

Disjoint Sets Find

```
1 int DisjointSets::find(int i) {
2   if ( s[i] < 0 ) { return i; }
3   else { return _find( s[i] ); }
4 }</pre>
```

```
void DisjointSets::unionBySize(int root1, int root2) {
     int newSize = arr [root1] + arr [root2];
 4
     // If arr [root1] is less than (more negative), it is the larger set;
     // we union the smaller set, root2, with root1.
     if ( arr [root1] < arr [root2] ) {</pre>
       arr [root2] = root1;
       arr [root1] = newSize;
10
11
     // Otherwise, do the opposite:
     else {
12
13
       arr [root1] = root2;
       arr [root2] = newSize;
14
15
16
```

Path Compression



Disjoint Sets Analysis

The **iterated log** function:

The number of times you can take a log of a number.

```
log*(n) = 0 , n \le 1
 1 + log*(log(n)), n > 1
```

What is **lg*(2⁶⁵⁵³⁶)**?

Disjoint Sets Analysis

In an Disjoint Sets implemented with smart unions and path compression on find:

Any sequence of **m union** and **find** operations result in the worse case running time of O(_______), where **n** is the number of items in the Disjoint Sets.