
CS 225
Data Structures

September 28 – AVL Trees
G Carl Evans

mp_traversals AMA

Thursday at 6pm on zoom

https://illinois.zoom.us/j/82051109289?pwd=bzNBbFZnWG5GRU9iZmx
TWTYwajBtZz09

It will also be recorded and added to the lecture stream on mediaspace
later.

https://illinois.zoom.us/j/82051109289?pwd=bzNBbFZnWG5GRU9iZmxTWTYwajBtZz09

AVL Tree Analysis
We know: insert, remove and find runs in: __________.

We will argue that: h is _________.

AVL Tree Analysis

•The number of nodes in the tree, f-1(h), will always
be greater than c × g-1(h) for all values where n > k.

n, number of nodes

h,
 h

ei
gh

t

n,
 n

um
be

r o
f n

od
es

h, height

Plan of Action
Since our goal is to find the lower bound on n given h, we
can begin by defining a function given h which describes
the smallest number of nodes in an AVL tree of height h:

Simplify the Recurrence
N(h) = 1 + N(h - 1) + N(h - 2)

State a Theorem
Theorem: An AVL tree of height h has at least __________.

Proof:
I. Consider an AVL tree and let h denote its height.

II. Case: ______________

An AVL tree of height ____ has at least ____ nodes.

Prove a Theorem
III. Case: ______________

An AVL tree of height ____ has at least ____ nodes.

Prove a Theorem
By an Inductive Hypothesis (IH):

We will show that:

An AVL tree of height ____ has at least ____ nodes.

Prove a Theorem
V. Using a proof by induction, we have shown that:

…and inverting:

Summary of Balanced BST
Red-Black Trees
- Max height: 2 * lg(n)
- Constant number of rotations on insert, remove, and find

AVL Trees
- Max height: 1.44 * lg(n)
- Rotations:

Summary of Balanced BST
Pros:
- Running Time:

- Improvement Over:

- Great for specific applications:

Summary of Balanced BST
Cons:
- Running Time:

- In-memory Requirement:

Red-Black Trees in C++
C++ provides us a balanced BST as part of the standard library:

std::map<K, V> map;

Red-Black Trees in C++
V & std::map<K, V>::operator[](const K &)

Red-Black Trees in C++
V & std::map<K, V>::operator[](const K &)

std::map<K, V>::erase(const K &)

Red-Black Trees in C++
iterator std::map<K, V>::lower_bound(const K &);
iterator std::map<K, V>::upper_bound(const K &);

Every Data Structure So Far
Unsorted
Array

Sorted
Array

Unsorted
List

Sorted
List

Binary Tree BST AVL

Find

Insert

Remove

Traverse

