Data Structures Binary Search Tree

CS 225 Brad Solomon July 16, 2022

Department of Computer Science

Join Sail 2023 Staff!

All Majors Encouraged to Apply!

Want to gain experience while also helping to inspire future CS students at Illinois? Apply to join the Sail 2023 Staff! **Applications are due 9/19!**

Follow us on Instagram to stay updated!

Committees

logistics

web

marketing

design

Learning Objectives

Review binary trees

Introduce the binary search tree

Conceptualize and pseudo-code BST ADT

Discuss the key weakness of a BST and foreshadow improvements

Binary Trees

Improved search on a binary tree

Binary Search Tree (BST)

A **binary search tree** T is either:

-

OR


```
1 #pragma once
 3 template <typename K, typename V>
 4 class BST {
    public:
      BST();
      void insert(const & K key, const V & value);
      V remove(const K & key);
      V find(const K & key) const;
10
    private:
11
12
       struct TreeNode {
          TreeNode *left, *right;
13
         K key;
14
         V value;
15
          TreeNode();
16
17
      };
18
       TreeNode *head ;
19
20 };
21
22
23
```

BST Find

find(66)

BST Find

find(9)


```
template<typename K, typename V>
                            _find(TreeNode *& root, const K & key) {
10
11
12
13
14
15
16
17
18
19
20
21
22
23
```



```
template<typename K, typename V>
   V find(const K & key) const {
10
11
12
13
14
15
16
17
18
19
20
21
22
23
```

BST Insert

insert(33)


```
template<typename K, typename V>
 3 void insert(const K & key, const V & val) {
10
11
12
13
14
15
16
17
18
19
20
21
22
23
```

BST Insert

What binary tree would be formed by inserting the following sequence of integers: [3, 7, 2, 1, 4, 8, 0]

remove (40)

remove (25)

remove (13)

remove (51)

BST Analysis – Running Time

Operation	BST Worst Case
find	
insert	
delete	
traverse	

Every BST operation that we have studied depends on the height O(h)

... how can we relate this in terms of **n**, the amount of data?

What is the \max number of nodes in a tree of height h?

What is the **min** number of nodes in a tree of height h?

The height of a BST depends on the order in which the data was inserted

Insert Order: [1, 3, 2, 4, 5, 6, 7]

Insert Order: [4, 2, 3, 6, 7, 1, 5]

How many different ways are there to insert n keys into a BST?

Claim: The average height of all arrangements is $O(\log n)$

Height-Balanced Tree

What tree is better?

Height balance: $b = height(T_R) - height(T_L)$

A tree is "balanced" if:

We can adjust the BST structure by performing **rotations**.

Next week we will define four kinds of rotations (L, R, LR, RL)

We will see that:

- 1. All rotations are local (subtrees are not impacted)
- 2. The running time of rotations are constant
- 3. The rotations maintain BST property

Motivation for rotations:

We call these trees: