
Department of Computer Science

Data Structures

CS 225

Brad Solomon

July 12, 2022

Trees

Learning Objectives

Introduce the concept and properties of a binary tree

Conceptualize and code tree traversals

Review fundamental tree terminology

Introduce fundamental tree search strategies

Trees
“The most important non-linear data structure in computer science.”
- David Knuth, The Art of Programming, Vol. 1

A tree is:

-

-

Tree Terminology Review

b

d

g

h

j

c

e

i

f

a

Find an edge that is not on the longest path in the tree.

Which vertex is the root of the tree?

How many parents does each vertex have?

Which vertex has the fewest children?

Which vertex has the most ancestors?

Which vertex has the most descendants?

List all vertices in b’s left subtree? In a’s?

List all leaves in the tree.

There are many types of trees

Binary Tree

A

B C

E

G

D

H

F

I

A binary tree T is either:

-

OR

-

Tree Property: height
height(T): length of the longest path from the root to a leaf

Given an arbitrary binary tree T, write a recursive equation for height:

A

XS

2

C

2

5

Tree Property: full
A tree F is full iff one of two things is true:

1.

A

XS

2

C

2

5

2.

Tree Property: perfect
A tree P of height h is perfect iff one of two things is true:

1.

A

XS

C

2

2.

2 5

Tree Property: complete
A tree P of height h is complete if:

1. For every level except the last the tree is perfect

A

XS

C

2

2. The last level is ‘pushed to the left’

2 5

Y Z

How many nodes are at level k in a
complete tree?

Tree Property: complete
A complete tree C of height h, Ch:

1. C-1 = {}

A

XS

C

2

2. Ch (where h>0) = {r, TL, TR} and either:

2 5

Y Z

TL is __________ and TR is _________

TL is __________ and TR is _________

OR

Tree Property: complete
Is every full tree complete?

A

XS

C

2 2 5

Y Z

Is every complete tree full?

Tree ADT

BinaryTree.h
#pragma once

template <class T>

class BinaryTree {

 public:

 /* ... */

 private: 

};

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

BinaryTree.h
#pragma once

template <class T>

class BinaryTree {

 public:

 /* ... */

 private: 

struct TreeNode {

T data;

TreeNode *left;

TreeNode *right;

}

TreeNode *root_;

};

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

Trees aren’t new:

A

XS

2

C

2 5

Y

C

S X

A 2 2 5

Y

Ø Ø

Ø Ø Ø Ø Ø
ØØ

root_

“Wasted Overhead” in Binary Tree
Theorem: If there are n objects in our representation of a binary tree,
then there are ________ NULL pointers.

“Wasted Overhead” in Binary Tree
Theorem: If there are n objects in our representation of a binary tree,
then there are n+1 NULL pointers.

Induction Step:

Traversal

*-

b

+

/

c

d ea

Traversals
template<class T>

void BinaryTree<T>::__Order(TreeNode * root)

{

}

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

*-

b

+

/

c

d ea

Traversals
template<class T>

void BinaryTree<T>::__Order(TreeNode * root)

{

 if (root != NULL) {

 ______________________;

 ___Order(root->left);

 ______________________;

 ___Order(root->right);

 ______________________;

 }

}

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

*-

b

+

/

c

d ea

Traversals

*-

b

+

/

c

d ea

template<class T>

void BinaryTree<T>::__Order(TreeNode * root)

{

 if (root != NULL) {

 ______________________;

 ___Order(root->left);

 ______________________;

 ___Order(root->right);

 ______________________;

 }

}

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

A Different Type of Traversal

*-

b

+

/

c

d ea

A Different Type of Traversal

*-

b

+

/

c

d ea

template<class T>

void BinaryTree<T>::lOrder(TreeNode * root)

{

Queue<TreeNode*> q;

q.enqueue(root);

while(q.empty() == False){

TreeNode* temp = q.head();

process(temp);

q.dequeue();

q.enqueue(temp->left);

q.enqueue(temp->right);

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

Traversal vs Search

Traversal

Search

D

CB

F

A

E

G

