String Algorithms and Data Structures

Burrows-Wheeler Transform

CS 199-225 October 24, 2022
Brad Solomon

UNIVERSITY OF

ILLINOIS

URBANA-CHAMPAIGN

Department of Computer Science

Informal Early Feedback

The instructor is well-prepared for each class / recording
13 responses

@ Strongly disagree
@ Disagree

@ Neutral

@ Agree

@ Strongly agree

Informal Early Feedback

| feel that | can actively participate in lecture | feel that | can actively participate in class in general
13 responses 13 responses

Informal Early Feedback

| receive helpful and complete answers to my questions

@ Strongly disagree
@ Disagree

@ Neutral

® Agree

@ Strongly agree

During lecture Outside lecture

I Informal Early Feedback

@ 1 - Not at all helpful
46.2% @
3
‘ :
@ 5 - Very helpful

30.8%

Lecture helpfulness Assignment helpfulness

Informal Early Feedback

The discord is pretty useful, as the instructor often responds to answer questions.
It's hard to decide between the lectures and assignments. Both have been instrumental.

recorded lectures / slides [are the most helpful]

Getting some of the hidden test cases or charComps test cases is very difficult. I
would like it more if these test cases were given or revealed, though I understand if
this isn't possible.

Maybe spend more time on big O analysis. It's really confusing sometimes.

I wish we could move back to in-person lectures.

Exact pattern matching w/ indexing

There are many data structures built on suffixes

We have now seen both of these data structures

AN

h

R

M#
A
5 e
e

o)
6

v Suffix Trie
®

© @O oo

: lr@::f::' $
[s] [4] .
s

NA$

k Suffix Tree

(S} S-S Nl IE) JUSE RO Ne)

C)
AS

ANAS
ANANAS
BANANAS
NAS

NANAS

Suffix Array

SBANANA
ASBANAN
ANASBAN
ANANASB
BANANAS
NASBANA
NANASBA

FM Index

Exact pattern matching w/ indexing

Suffix tree Suffix array

Time: Does P occur?

Time: Report k
locations of P

Space

m=|T|, n=|P|, k=#occurrencesof Pin T

Suffix tree vs suffix array: size

The suffix array has a smaller constant factor than the tree

BT Suffix tree: ~16 bytes per character
: - &
2 o &
2 g Suffix array: ~4 bytes per character
- ffix a2 :

o > Raw text: 2 bits per character

I I I I I
0.2 0.4 0.6 0.8 1.0

Fraction of human chromosome 1 indexed

Exact pattern matching w/ indexing
There are many data structures built on suffixes

The FM index is a compressed self-index (smaller* than original text)!

RN m 5] ¢ GBANAN“
5{ ¢ T 1 5| as ASBANAN
She ;{: E:}i 3] anas ANASBAN
; t%) ip $ NA/:—’/$ NA$ 1| ANANAS ANANASB
Js o | [5] ' [2] 0| BANANA$ BANANAS
g ®4 CP s /\ Nas 4] Nas NASBANA
S5 o6 O 2] NANAs NANASEA
ES Suffix Trie Suffix Tree Suffix Array kFM Indey

Reduced size

Exact pattern matching w/ indexing

The basis of the FM index is a transformation

BANANAS

\

ANNBSAA

Burrows-Wheeler Transform

Reversible permutation of the characters of a string

T BWT(T)
BANANAS € ANNBSAA

1) How to encode?
2) How to decode?

3) How is it useful for search?

Burrows-Wheeler Transform

Reversible permutation of the characters of a string

abaabas$?27?
T

Burrows M, Wheeler DJ: A block sorting lossless data compression algorithm. Digital Equipment Corporation, Palo Alto, CA 1994, Technical Report 124; 1994

Text rotations

A string is a‘rotation’ of another string if it can be reached by
wrap-around shifting the characters

abcdefs$

bcde f$a

cdefSab

def Sabc
efSabcd

fSabcde
Sabcdef

(after this they
repeat)

Text Rotations

A string is a‘rotation’ of another string if it can be reached by
wrap-around shifting the characters

Which of these are rotations of ABCD’?

A) BCDA B) BACD

C) DCAB D) CDAB

Burrows-Wheeler Transform

Reversible permutation of the characters of a string

abaabas$

baaba$a
abaabas aabaS$ab

T abaSaba
baSabaa

aSabaab
Sabaaba

(after this they
repeat)

Ay
7. o
Q[‘/O
s

Burrows M, Wheeler DJ: A block sorting lossless data compression algorithm. Digital Equipment Corporation, Palo Alto, CA 1994, Technical Report 124; 1994

Burrows-Wheeler Transform

Reversible permutation of the characters of a string

ab

Sa

as$

abaabas$ ba
T ab
aa

b a

Ay
7. o
<9[‘/O
s

Burrows M, Wheeler DJ: A block sorting lossless data compression algorithm. Digital Equipment Corporation, Palo Alto, CA 1994, Technical Report 124; 1994

Burrows-Wheeler Transform

Reversible permutation of the characters of a string

Sabaaba
aSabaab
aabaS$Sab
abaabas$ agaSEbg
4 abaaba

! /’%b. ba$abaa
s VbaabaSa

Sort Burrows-Wheeler
Matrix

abbas$aa
BWT(T)

Last
column

Burrows M, Wheeler DJ: A block sorting lossless data compression algorithm. Digital Equipment Corporation, Palo Alto, CA 1994, Technical Report 124; 1994

Burrows-Wheeler Transform

(1) Build all rotations
(2) Sort all rotations
(3) Take last column

T=cars

Burrows-Wheeler Transform

(1) Build all rotations
(2) Sort all rotations
(3) Take last column

T=cars$ a r 3 c rc$a

Last
vyr $ c a column

Assignment 8: a_bwt

Learning Objective:
Implement the Burrows-Wheeler Transform on text
Reverse the Burrows-Wheeler Transform to reproduce text

Consider: How can the BWT be stored smaller than the original text?

Burrows-Wheeler Transform

How to reverse the BWT?

v
abaabas$
T

-
—’-—
"
-
-
-
”
-

A4y
AQ»@
o
Ns

aSabaab
aabaSab
abaSaba
abaaba$
baSabaa
Ybaaba$a

Sort Burrows-Wheeler
Matrix

-
-
-

-
-~
s

Y
Y
~

Last
column

Burrows-Wheeler Transform

BWT(T)=r ¢ S a T=cars}

Burrows-Wheeler Transform

BWT(T)=r c $ a T=cars$
1) Prepend the BWT as a column 2) Sort the full matrix as rows

3) Repeat 1 and 2 until full matrix 4) Pick the row ending in‘$’

S $ ¢ $ ¢ a $ ¢ a
a ar ar S ar §
C cC a cC a r cC a ¥r

Burrows-Wheeler Transform

BWT(T)=r ¢ S a T=cars}

Burrows-Wheeler Transform

BWT(T)=r c $ a T=cars

Burrows-Wheeler Transform

BWT(T)=r ¢ S a T=cars}

Burrows-Wheeler Transform

What is the right contextof a pp/l e $? leSap

A letter always has the same right context.

© 0 = 0 9 W»n
C = 0O N0V 9
-0 N o T O
T N o C —T
o 0T M —
09 C TC =— 1N 0

Burrows-Wheeler Transform: T-ranking

To continue, we have to be able to uniquely identify each character
In our text.

Give each character in T a rank, equal to # times the character
occurred previously in T. Call this the T-ranking.

abaabays$

Ranks aren’t explicitly stored; they are just for illustration

Burrows-Wheeler Transform

F
BWM with T-ranking:

as
ai
d>
do

das

ai

a2
do

Look at first and last columns, called Fand L

(and look at just the as)

as occur in the same order in Fand L. As we look down columns,

in both cases we see: as, a1, a, ao

Burrows-Wheeler Transform

F
BWM with T-ranking:

Same with bs: b1, bo

bo

Burrows-Wheeler Transform: LF Mapping

F L
BWM with T-ranking: $ as
das b1
ai bo
az ai
ao S
b, a2
bo do

LF Mapping: The ith occurrence of a character cin L and the jth occurrence
of cin F correspond to the same occurrence in T (i.e. have same rank)

Burrows-Wheeler Transform: LF Mapping

Why does this work?

Sabaaba
aSabaab
Right context: alaba s a 5 |
aba $ ab 3 3 3 a Right context:
abaabas abasab
baSabaa
baaba$a

These characters have the same right contexts!

These characters are the same character! aoboai ax b asz $

Burrows-Wheeler Transform: LF Mapping

Why does this work?

_Sabaaba3 $abaaba3,\
Why are these as in as| 9 E b g a E‘ as 9 ; b g a :g‘ Why are these as in
this order relative to alada>aio aabda>abo ihisorder relative to
each other? azbasab a a2bas abla /each other?
' laglbaaba$ aobaabaS/ '
ba$Sabaa; b:a$abajla:
boaaba$ a boaaba$|ao
They're sorted by They're sorted by
right-context right-context

Occurrences of ciin F are sorted by right-context. Same for L!

Any ranking we give to characters in T will matchin Fand L

Burrows-Wheeler Transform: LF Mapping

LF Mapping can be used to recover our original text too!
GivenBWT= as biboai $§ az ao

What is L?

What is F?

Burrows-Wheeler Transform: LF Mapping

LF Mapping can be used to recover our original text too!

Start in first row. F must have S. F
L contains character just priorto $: as S
as
Jump to row beginning with ao. a
L contains character just prior to ao: bo. as
Repeat for bo, get a: ao
Repeat for az, get a: b;
Repeat for as, get by bo
Repeat for by, get as
Repeat for az, get $ (done)

Burrows-Wheeler Transform: LF Mapping

Another way to visualize:

F L F L F L F L F L F L F L
—> $—as
az—>b
a1—>bo
d2—>ai
ao->$
bi—az

bo—>ao

T: aoboaj az bias S

Assignment 8: a_bwt

Learning Objective:
Implement the Burrows-Wheeler Transform on text

Reverse the Burrows-Wheeler Transform to reproduce text

Consider: You can use either LF mapping or prepend-sort to reverse.
Which do you think would be easier to implement (or more efficient)?

Burrows-Wheeler Transform: A better ranking

Any ranking we give to characters in T will matchin Fand L

T-Rank: Order by T G—Rank: Order byh What is good about f-rank?

F L F L

S as S ao
as b1 do bo
di bo a1l b1
d>2 di d2 ai
ao S as S

b a2 b1 -)
bo do bo as

Burrows-Wheeler Transform: A better ranking
T=a b b c cd3$

What is the BWM index for my first instance of C? (Co) [0-base for answer]

Q A" n T YD N ™M
A AT T WO —

Burrows-Wheeler Transform: A better ranking

Say T has 300 As, 400 Cs, 250 Gsand 700 Tsand $ <A< C<G<T
What is the BWM index for my 100th instance of G? (Ggo) [0-base for answer]

0 row starting with $ (1 row)

Kip rows starting with A (300 rows)

Kip rows starting with C (400 rows)

Kip first 99 rows starting with G (99 rows)

K

Ln N 1 N

Answer: skip 800 rows -> index 800 contains my 100th G

With a little preprocessing we can find any character in O(1) time!

FM Index

(Next week’s material)
An index combining the BWT with a few small auxiliary data structures

Core of index is first (F) and last (L) rows from BWM:

L isthe samesizeas T

F can be represented as array of |2| integers (or
not stored at all!)

ST 999N
0 0N T O ™

We're discarding T— we can recover it from L!

FM Index: Querying

Can we query like the suffix array?

S a 6|$

a b 5/la$

a b 2laabas$

a a 3labas$

a S Olabaabas$
b a 4/bas$

b. a 1/lbaaba$

We don’t have these columns, and we don’t haveT.
Binary search not possible.

FM Index: Querying

The BWM is a lot like the suffix array — maybe we can query the same way?

Sabaaba 6|S
aSabaab 5/a$
aabaSab 2laabas$
abaSaba 3labas$
abaabas$ Olabaaba$
baSabaa 4 ba$
baabas$a 1/baaba$

BWM(T) SA(T)

FM Index: Querying

The BWM is a lot like the suffix array — maybe we can query the same way?

S a 6|$

a b 5/a$

a b 2laabas$

a a 3laba$

a S Olabaaba$
b 2 41ba$

b a 1 baabas$
S

\

We don’t have these columns, and we don’t haveT.

FM Index: Querying

Look for range of rows of BWM(T) with P as prefix

Start with shortest suffix, then match successively longer suffixes

P=aba

F L

S ao

do b
Easy to find all the rows | |a1 b
beginning with a a2 ai

IRCE S
b a:
b as

FM Index: Querying

We have rows beginning with a, now we want rows beginning with ba

p=aba p=aba

F L F L

$ Qo S ao
ao . bog ao bo
ai b1 <« Look at those rows in L. ai b1
a> ai bo, b1 are bs occuring just to left. a> ai
as S 1 as S
bo a> Use LF Mapping. Let new . bo a>
b; as range delimit those bs b as

Note: We still aren't storing the characters in grey, we just know they exist.

FM Index: Querying

We have rows beginning with ba, now we seek rows beginning with aba

p=aba p=-aba

F L r /

$ o S do
ao bo ao be
ai b1 a b1
a2 ai ' as ar
as $ Use LF Mapping :I: as $
bo i az;}— a2, @3 occur just to left. bo a>
L a b, 2

Now we have the rows with prefix aba

FM Index: Querying

When P does not occur in T, we eventually fail to find next character in L:

P=bba
F L
S do
ao bo
ail b1
a> ai
as S

Rows with ba prefix I bo a2 }— No bs!

FM Index: Querying

Problem 1: If we scan characters in the last column, that can be slow, O(m)

p=aba
F L
S ao
dao bo
a b Scan, looking for bs
az ai
as S v
bo a2

FM Index: Querying @

Problem 2: We don't immediately know where the matches areinT...

Got the same range, [3, 5), we would

p=aba have got from suffix array
F L
S do 6|9$
ao bo 5/a$
ai b, 2laabas$
a2 ail 3|la ba $
[3’5)\33 S 3,5) 0Ola balaba$
bo a> 4|b a $
Where are b, as llbaabas$

the values?

Bonus Slides

Burrows-Wheeler Transform

Reversible permutation of the characters of a string

T BWT(T)
BANANAS € ANNBSAA

1) How to encode?
2) How to decode?
3) How is it useful for compression?

4) How is it useful for search?

Burrows-Wheeler Transform

Tomorrow_and tomorrow_and_tomorrow
w$wwdd nnoooaattTmmmrrrrrrooo 000

It was_the best of times it was the worst of times$

s$esttssfftteww hhmmbootttt ii woeeaaressIi

“bzip”: compression w/ a BWT to better organize text

Burrows-Wheeler Transform

orrow_and tomorrow and tomorrow$tom
ow$tomorrow and tomorrow_and tomorr
ow_and_tomorrow$tomorrow and tomorr
ow_and tomorrow and tomorrow$tomorr
row$tomorrow and tomorrow and tomor
row_and_tomorrow$tomorrow and_ tomor
row_and_tomorrow and tomorrow$tomor
rrow$tomorrow _and tomorrow and tomo

Ordered by the context to the right of each character

Burrows-Wheeler Transform

final
sorted rotations

[¢]
=
B

~
=

to decompress. It achieves compression
to perform only comparisons to a depth

transformation} This section describes
transformation} We use the example and
treats the right-hand side as the most

tree for each 16 kbyte input block, enc
tree in the output stream, then encodes
turn, set $L[i]$ to be the

turn, set $R[1]$ to the

unusual data. Like the algorithm of Man
use a single set of probabilities table
using the positions of the suffixes in

value at a given point in the vector $R
we present modifications that improve t
when the block size is quite large. Ho
which codes that have not been seen in

with ch appear in the {\em same order
with chs. In our exam
with Huffman or arithmetic coding. Bri
with figures given by Bell \cite{bell}.

In English (and most languages),
the next character in a word is
not independent of the previous.

In general, if text structured
BWT(T) more compressible

O O F-H- H- O ® F- ® ® O H-H O ® O O 0 O ®
S BB B3B8 BBBB8B88B3B8B88888

Figure 1: Example of sorted rotations. Twenty consecutive rotations from the
sorted list of rotations of a version of this paper are shown, together with the final
character of each rotation.

Burrows M, Wheeler DJ: A block sorting lossless data compression algorithm. Digital
Equipment Corporation, Palo Alto, CA 1994, Technical Report 124; 1994

Burrows-Wheeler Transform

Lets compare the SA with the BWT...

T=abaabas$

= | [OWIN [T Oy

SA(T)

Suffix Array is O(m)

Sabaaba
aSabaab
aabas$Sab
abaSaba
abaabas
baSabaa
baaba$a

BWM(T)

Burrows-Wheeler Transform

Lets compare the SA with the BWT...

T=abaabas$

6
5
2
3
0
4
1
SA(T) BWT(T)
Suffix Array is O(m) BWT is O(m)

The BWT has a better constant factor!

OO WnVNoY TTT 9D

Burrows-Wheeler Transform

BWM is related to the suffix array

Sabaaba 69S
aSabaab 5/a$
aabas$Sab 2laabas$
abaSaba 3labas$
abaaba$ Olabaabas$
baSabaa 41bas$
baaba$a llbaabas$
BWM(T) SA(T)

Same order whether rows are rotations or suffixes

Burrows-Wheeler Transform

In fact, this gives us a new definition / way to construct BWT(T):

T[SA[i] — 1] if SA[] >0

BWTT = { $ if SA[i] =0

“BWT = characters just to the left of the suffixes in the suffix array”

6|9$

5/la $

2laabas$
abaabas$ 3labas$

Olabaaba$

41bas$

l/'baabas$

.

SA(T) BWM(T)

Burrows-Wheeler Transform

In fact, this gives us a new definition / way to construct BWT(T):

T[SA[i] — 1] if SA[] >0

BWTli] = { $ if SA[i] =0

“BWT = characters just to the left of the suffixes in the suffix array”

6|$S a T[5]
5/la $ b T[4]
2laabas b T[1]
abaabas$ 3labas$ a T[2]
Olabaaba$ S SA[O]
4 bas a T[3]
l1lbaabas$ a T[O]
T SA(T) BWM(T)

O(|T]) O(|T])

