String Algorithms and Data Structures

Suffix Tries (and Trees)

CS 199-225 October 10, 2022
Brad Solomon

UNIVERSITY OF

ILLINOIS

URBANA-CHAMPAIGN

Department of Computer Science

Exact pattern matching w/ indexing

P Preprocess (index) ~ O(|T|)

N\

Search Index ~ O(|P]|)

Find instancesof Pin T

String indexing with Tries

Trie: A rooted tree storing a collection of (key, value) pairs
Keys: Values:

instant 1
internal 2

internet 3
Each edge is labeled with a characterce 2 a

For given node, at most one child edge has
label ¢, forany ce 2

Each key is “spelled out” along some path starting
at root and each value is stored at the leaf

NaryTree build_trie(std::string T)

I'CGTGC We are storing dri+ b values

Key Value

C 0

G 1

T 2

G 3

C 4

G 0 root:

GT 1

TG 2

| TICT]+ 1)

We had to do > insertions

std::vector<int> searchPattern(P)

I'CGTGC
Return index
Key Value
C 0
G T
T 2
G 3
C 4
G 0 root:
GT T
TG 2

We can do exact pattern matching in O(P) time!

Exact pattern matching w/ indexing

How can we be more efficient in our preprocessing?

1) Perform fewer insertions to store T

2) Store fewer values in index

What if we just stored the suffixes?

Exact pattern matching w/ indexing @

There are many data structures built on suffixes

Modern methods still use these today

ﬁ(/;k\ K,Ai“%\ 5l s $BANAID
T 5| As ASBANAN
3559\? K B 3| anas ANASBAN
5 ;} i@ NA::;—* P 1| ANANA$ ANANASB
Js o [5] ' [2] . 0| BANANA$ BANANAS
g ®4 ? s /\ nas 4| Nas NASBANA
S5 o6 O B 2] NANAs NANASEA
: ¢
? Suffix Trie k Suffix Tree Suffix Array FMIndey
¢

Suffix Trie

Build a trie containing all suffixes of a text T

I.CGTGC
CGTGC
GTGC

T G C | T suffixes

GC

C

Suffix Trie

Build a trie containing all suffixes of a text T

I:CGTGC
CGTGC
GTGC
TGC
GC

C root:

Inserting just T suffixes gets us the same tree*!

Suffix Trie

To prevent loss of information, add a terminal character

I:CGTGCS

Key Value
CGTGCY 0

GTGC$
TGC$
GC$
C$
$

root:

Ll S| WIN| -

A terminal character cannot be a part of the alphabet!

Suffix Trie

To prevent loss of information, add a terminal character

I:CGTGCS

Key Value
CGTGCY 0

GTGC$
TGC$
GC$
C$
$

Ll S| WIN| -

Suffix Trie Construction

T:aba$ a
Key Value @)
aba$ 0
b
1 B
2 a
C

Where do | put value?

Suffix Trie Construction

T-aba $ a
Key Value C>
aba$ 0
b
1
2 a

What are my other keys?

Suffix Trie Construction

T-aba $ a
Key Value C>
aba$ 0
b a
ba$ 1
a$ 2 a S
What edges do | add?
S ba$

©

Suffix Trie Construction

T:aba$

Key Value
aba$ 0

a
D
> b
ba$ 1
a$ 2 as Cf) S
Are we done?
©

S

Suffix Trie Construction

T'aba$
Key Value

aba$ 0

ba$ 1

a% 2

$ 3

©

NaryTree Modification | and

stree.h

1| class NaryTree

2|

3 public:

4 struct Node {

5 int index;

6 std: :map<std::string, Node*> children;
-

8 Node (std: :string s, int i)

9 {
10 if(s.length() > 0) {
11 std: :string £ = s.substr(0,1);
12 children[f] = new Node(s.substr(l), i);
13 } else {
14 index = 1i;
15 }
16 }
17 };
18
19 protected:
20 Node* root;
21

NaryTree build_strie(std::string T)

T'CGTGCS Store | T'| + 1 values

Key Value / C ?
CGTGC$ | o gD ; T O)—

GTGC$ 1

TGC$ 2 C >

G /
GC$ | 3 S O—0
C$ 4 root:

$\5J@/@/@@

Perform | T| + 1 insertions

Assignment 6: a_stree

Learning Objective:
Use an existing implementation of a suffix trie as a N-ary Tree
Implement exact pattern matching using a suffix trie

Construct a suffix tree from a suffix trie

Suffix Trie Search = abaaba$ (

Each of T’s substrings is spelled out along a path
from the root.

Every substring is a prefix of some suffix

P =baa

Search(P) =

P=ab ! 5
Search(P) = ? @

Suffix Trie Search

T = abaaba$

P = abaa

Each of T’s substrings is spelled out along a path
from the root.

Every substring is a prefix of some suffix

Starting at root: 2
(0) If P empty, return values of all leaves. é I Yes, it’s a substring
(1) Try to match front character $ Return {2}

(2) If match, move to appropriate child) ®

(2.5) Set pattern equal to remainder i 5
(2.5) Go back to (0) <$> O
(3) If mismatch, Pis not a substring! 0

Suffix Trie Search

Each of T’s substrings is spelled out along a path
from the root.

Every substring is a prefix of some suffix

Starting at root:
(0) If P empty, return values of all leaves.
(1) Try to match front character
(2) If match, move to appropriate child
(2.5) Set pattern equal to remainder
(2.5) Go back to (0)
(3) If mismatch, Pis not a substring!

T = abaaba$
P = baabb

00O,
No, not a substring

@ Return {-1}
O %
5

©

Suffix Trie Search

T = abaaba$ /?\
P = baabb = PN

Yes, it's a substring

Each of T’s substrings is spelled out along a path
from the root.

{Return {0,2,3,5}

Every substring is a prefix of some suffix

Starting at root:
(0) If P empty, return values of all leaves.
(1) Try to match front character
(2) If match, move to appropriate child
(2.5) Set pattern equal to remainder
(2.5) Go back to (0)
(3) If mismatch, Pis not a substring! (0)

Suffix Trie Search

T = abaaba$ /ﬁK
P = baabb = PN

Yes, it's a substring

Each of T’s substrings is spelled out along a path

from the root. Return {0,2,3,5}

Every substring is a prefix of some suffix

Starting at root:
(0) If P empty, return values of all leaves.

o
£
=

Trie Search Big O:

£
N

Suffix Trie Search Big O:

Suffix Trie

T = aaaa$

How does the suffix trie grow with | T|=m?

Is there a class of string where the number of
suffix trie nodes grows linearly with m?

Yes: a string of ma’sin a row (am)

* 1 Root
e m nodes with "a"
edge to parent
e m+ 1 nodes with

incoming $ edge

2m + 2 nodes

Suffix Trie

How does the suffix trie grow with | T|=m? T'=aaabbb$
o}
Is there a class of string where the number of a’ b
. D R e
suffix trie nodes grows with m=? b R b
Yes: anb" where 2n=m f b p \b

e 1 root b ¢ gﬁ

« n nodes along “b chain," right J b
« n nodes along “a chain,” middle
« n chains of n“b” nodes hanging off “a chain” (n2 total) Figure & example
e 2n+ 19 leaves (not shown) ‘ by Carl Kingsford

n2 + 4n + 2 nodes, where m = 2n

Suffix trie: actual growth

8 | = m(m+1)/2
8 | = actual
Built suffix tries for the first 500 o
prefixes of a virus genome S -
Black curve shows how # nodes : s
increases with prefix length s ©
(I) 1c|)o 2c|>o 3(|)o 4c|)o 5(|)o

Length prefix over which suffix trie was built

Figure & example by Ben Langmead

Suffix trie: actual growth

Built suffix tries for the first 500
prefixes of a virus genome

Black curve shows how # nodes
increases with prefix length

Actual growth much closer to
worst case than to best!

suffix trie nodes

80000 100000 120000

20000 40000 60000

0

= m(m+1)/2
= gctual
—_— 2m+2

0 100 200 300 400 500

Length prefix over which suffix trie was built

Figure & example by Ben Langmead

Assignment 6: a_stree @

Learning Objective:
Use an existing implementation of a suffix trie as a N-ary Tree
Implement exact pattern matching using a suffix trie

Construct a suffix tree from a suffix trie

Suffix Trie: Making it smaller
T = abaaba$ /P\

\. ______________ Idea 1: Coalesce non-branching paths
dﬁ into a single edge with a string label

P $

b . Q:
a}i? ‘(E;\
§ T

aba$

‘S

5 |
a . @
QS S = Reduces # nodes, edges,
‘ guarantees non-leaf nodes have >1 child

Suffix Trie: Making it smaller

T = abaaba$ /?\$ /9\
foo " T e

i Aol
$ o 47 » ﬁbl .
¢‘<5 7

5. ¢

$

Idea 1: Coalesce non-branching paths
(; into a single edge with a string label
i Reduces # nodes, edges,

guarantees non-leaf nodes have >1 child

Coalescing edges

We want to coalesce paths that
don’t branch.

S

S

©

> a
@/g a
QVO
0

Coalescing edges

We want to coalesce paths that
don’t branch.

‘Current root’in blue

Coalesce’S’? No, nothing to merge

Coalesce‘a’”? No, child has a branch

S
Coalesce’b’? Yes, b->ais the only path. @

Coalescing edges

We want to coalesce paths that
don’t branch.

‘Current root’in blue

Coalesce’S’? No, nothing to merge

Coalesce‘a’”? No, child has a branch

S
Coalesce’b’? Yes, b->ais the only path. @

Coalescing edges

No more b!

We want to coalesce paths that
don’t branch.

‘Current root’in blue

Coalesce’S’? No, nothing to merge Q

. One less node!
Coalesce‘a’”? No, child has a branch

S
Coalesce’b’? Yes, b->ais the only path. @

Are we done?

Coalescing edges

We want to coalesce paths that
don’t branch.

‘Current root’in blue

We added a new edge’ba’l

We might need to coalesce again!

Coalescing edges

We want to coalesce paths that
don’t branch.

‘Current root’in blue
We added a new edge’ba’l
We might need to coalesce again!

Repeat until all edges have been checked

Coalescing Edges

Coalesce all paths that don't branch.

A suffix tree of | T|=m should
have:

m leaves* (including‘$’'inT)
< m — 1 internal nodes

Each internal node > 2 children

How to do this is up to you (and for you to work out)!

Iterator on Dynamic Data

stree.cpp

1| map<string,Node*>::iterator it = myMap.begin() ;

2

3| while (it '= myMap.end()) {

4

5 Node* myChild = it->second;

6

7 if < LOGIC STATEMENT >{

8 Node* temp = < myChild's child >;

9
10 myMap ["NewEdge”] = temp;
11
12 delete myChild;
13
14 myMap.erase (it++) ;
15 b
16 }
17| }
18
19 myChild
20
21

a
\ 4

myChild’s child

Iterator on Dynamic Data

stree.cpp

1| map<string,Node*>::iterator it = myMap.begin() ;

2

3| while (it '= myMap.end()) {

4

5 Node* myChild = it->second;

6

7 if < LOGIC STATEMENT >{

8 Node* temp = < myChild's child >;

9
10 myMap ["NewEdge”] = temp;
11
12 delete myChild;
13
14 myMap.erase (it++) ;
15 b
16 }
17 | }
18
19 myChild
20
21

d
\ 4

myChild’s child

Iterator on Dynamic Data

stree.cpp
1| map<string,Node*>::iterator it = myMap.begin() ;
2
3| while (it '= myMap.end()) {
4
5 Node* myChild = it->second;
6
7 if < LOGIC STATEMENT >{
8 Node* temp = < myChild's child >;
9
10 myMap ["NewEdge”] = temp;
11
12 delete myChild;
13
14 myMap.erase (it++) ;
15 b
16 }
17 | }
18
19
20
21

myChild’s child

Iterator on Dynamic Data

stree.cpp
1| map<string,Node*>::iterator it = myMap.begin() ;
2
3| while (it '= myMap.end()) {
4
5 Node* myChild = it->second;
6
7 if < LOGIC STATEMENT >{
8 Node* temp = < myChild's child >;
9
10 myMap ["NewEdge”] = temp;
11
12 delete myChild;
13
14 myMap .erase (it++) ;
15
16 }
17| }
13 iterator points at ‘next’
20
21

myChild’s child

Iterator on Dynamic Data

stree.cpp
1| map<string,Node*>::iterator it = myMap.begin() ;
2
3| while (it '= myMap.end()) {
4
5 Node* myChild = it->second;
6
7 if < LOGIC STATEMENT >{
8 Node* temp = < myChild's child >;
9
10 myMap ["NewEdge”] = temp;
11
12 delete myChild;
13
14 it = myMap.erase(it) ;
15
16 }
17| }
13 iterator points at ‘next’
20
21

myChild’s child

Assignment 6: a_stree @

Learning Objective:
Use an existing implementation of a suffix trie as a N-ary Tree
Implement exact pattern matching using a suffix trie
Construct a suffix tree from a suffix trie

Consider: The modified NaryTree code works for both suffix tries and
trees. Can you write a search that works for both trees and tries?

Suffix tree: building

Method 1: build suffix trie, coalesce
non-branching paths, relabel edges

O(m?2) time, O(M?2) space

Method 2: build single-edge tree
representing longest suffix, augment to
include the 2nd-longest, augment to include
3rd-longest, etc (Gusfield 5.4)

O(m?2) time, O(m) space

Algorithmica (1995) 14: 249-260

Algorithmica

© 1995 Springer-Verlag New York Inc.

On-Line Construction of Suffix Trees!
E. Ukkonen?

Abstract. An on-line algorithm is presented for constructing the suffix tree for a given string in time
linear in the length of the string. The new algorithm has the desirable property of processing the string
symbol by symbol from left to right. It always has the suffix tree for the scanned part of the string
ready. The method is developed as a linear-time version of a very simple algorithm for (quadratic size)
suffix fries. Regardless of its quadratic worst case this latter algorithm can be a good practical method
when the string is not too long. Another variation of this method is shown to give, in a natural way,
the well-known algorithms for constructing suffix automata (DAWGs).

Key Words. Linear-time algorithm, Suffix tree, Suffix trie, Suffix automaton, DAWG.

Canonical algorithm for O(m) time & space suffix tree construction

Won't cover it in class; see Gusfield Ch. 6 for details

suffix trie nodes

20000 40000 60000 80000 100000 120000

0

Suffix trie
>100K nodes

= m(m+1)/2
= actual
—_— 2Mm+2

I I I I I
100 200 300 400

o

Length prefix over which suffix trie was built

500

suffix tree nodes

400 600 800 1000

200

Suffix tree

<1K nodes

2m
—e— actual
e m

o

T T T T
100 200 300 400

Length prefix over which suffix tree was built

500

Suffix Tree

A rooted tree storing a collection of suffixes
as (key, value) pairs

Eac
pat

Eac

For

N key is “spelled out”along some
n starting at root

n edge is labeled with a string s

given node, at most one child edge

starts with character ¢, forany c e 2

Each internal node contains >1 children

Each key’s value is stored at a leaf

T = abaaba$

Bonus Slides

Suffix Tree: Size Redux
T=abaabaS |T|=m

2N

a ba
;5\ L # non-leaf nodes (upper-bound)?

ba $\‘ $aloa$
ﬁ o ‘%
7 &

leaves?

Suffix Tree: Size Redux

Trie or tree: we contain all suffixes of a text [T|=m

"GTTATAGCTGATCGCGGCGTAGCGGS$
GTTATAGCTGATCGCGGCGTAGCGGS$
TTATAGCTGATCGCGGCGTAGCGGS
TATAGCTGATCGCGGCGTAGCGGS$
ATAGCTGATCGCGGCGTAGCGGS$
TAGCTGATCGCGGCGTAGCGGS$
AGCTGATCGCGGCGTAGCGG$
GCTGATCGCGGCGTAGCGGS$
CTGATCGCGGCGTAGCGGS$
TGATCGCGGCGTAGCGGS$
GATCGCGGCGTAGCGGS$
ATCGCGGCGTAGCGGS m(m+1)/2chars
TCGCGGCGTAGCGGS$
CGCGGCGTAGCGGS
GCGGCGTAGCGGS$
CGGCGTAGCGGS$

GGCGTAGCGGS$

GCGTAGCGGS$

CGTAGCGGS$

GTAGCGGS$

TAGCGG$

AGCGGS$

GCGG$

CGG$

GG$

G$

$

Suffix Tree: Size Redux

Store T itself in addition to the tree. Convert tree’s edge labels to
(index, length) pairs with respectto T.
T = abaaba$
0 /%

/Ce\s (6, 1
1)

a
ba \‘ (1,2)
"o Q{ ’ (e
‘ aba$ (34
¢ aba$ \ ©6,1) (3,4)
aba$ b & 2,4) &

Space is now O(m) Suffix trie was O(m?2)!

)@@\

Suffix Tree: Size Redux

T = abaaba$ T = abaaba$ /?\
0, 1) 6 1) 0, 1) (6’1{

1, 2) ' (1,2)

6
S 2 6,1) s {
1 2) 6, 1) —> (1,2) ~(6,1)

‘ 3, 4) 5 é/l (3,4)
6 1) G, 4 61 (3,1) \1
2

3,4 (3,4 |3

/ “—T(0,1)="a"
0 T(3,4)="abas"
Label =“aaba$”

Suffix Tree: Size Redux

Index 2

T = abaaba$ T =abaaba$ /?\
0, 1) 6 1) 0, 1) (6’1{

1, 2) ' (1,2)

6
S 2 6,1) s {
1 2) 6, 1) —> (1,2) ~(6,1)

‘ 3, 4) 5 é/l (3,4)
6 1) G, 4 61 (3,1) \1
2

3,4 (3,4 |3

z / <« Label ="aaba$”
0

