String Algorithms and Data Structures

Boyer-Moore

CS 199-225 September 26, 2022
Brad Solomon

UNIVERSITY OF

ILLINOIS

URBANA-CHAMPAIGN

Department of Computer Science



Exact Pattern Matching w/ Z-algorithm

Pattern, P Text, T
Naive =~ O(|P||T|) Z-Algorithm ~ (| P| + | T|)

Find instancesof Pin T

‘instances’: An exact, full length copy




Why continue?

The Z-algorithm is:
The Z-algorithmis: O(| P| + | T'|) time
An alphabet-independent solution
The Z-algorithm is less good at:
Searching for a set of patterns (Aho-Corasick)
Running in sub-linear* time (Boyer-Moore)

* — in practice, not theory




Exact pattern matching w/ Boyer-Moore @

Boyer Moore preprocesses the pattern

P

Preprocess T
~ O(|P])
Boyer-Moore ~ O(|P |+ |T])

Find instances of Pin T

‘instances’: An exact, full length copy




Boyer-Moore

Intuition: Learn from alignments to avoid others
P-cat

T-carl carried the cat
CaQtl mremcccce e e e e e e e e e e .- = =

0123456789..

What does this alignment tell us?




Boyer-Moore

Intuition: Learn from alignments to avoid others
P-cat

T-carl carried the cat
Cat r=--me-mccccecccccc s e e e a >

0123456789..

What does this alignment tell us?

1) Our pattern doesn’t match at this alignment

cat ‘cat’!



Boyer-Moore

Intuition: Learn from alignments to avoid others
P-cat

T-carl carried the cat
Cat r=--me-mccccecccccc s e e e a >

0123456789..

What does this alignment tell us?

2) Our pattern doesn’t match at /ater alignments

cat ‘cat’!



Boyer-Moore

Intuition: Learn from alignments to avoid others
P-cat

T-carl carried the cat
Cat r=--me-mccccecccccc s e e e a >

0123456789 ..

What does this alignment tell us?

2) Our pattern doesn’t match at /ater alignments

cat ‘cat’!



Boyer-Moore

Intuition: Learn from alignments to avoid others

P:cat
T-carl carried the cat
CQtl i mmecececc e e e e e e e e e e e === == >
cat skip!
cat skip!

What does this alignment tell us?

2) Our pattern doesn’t match at /ater alignments

cat ‘cat’!



Boyer-Moore

Intuition: Learn from alignments to avoid others
P-word

T:There would have been a

©123456789..




Boyer-Moore

Intuition: Learn from alignments to avoid others
P-word

T:-There would have been a

©123456789..

1) Our pattern doesn’t match at this alignment

T: woul
P: word




Boyer-Moore

Intuition: Learn from alignments to avoid others
P-word

T:-There would have been a

©123456789..

How many alignments can we skip?

2) Our pattern doesn’t match at /ater alignments



Boyer-Moore

Intuition: Learn from alignments to avoid others
P-word

T:-There would have been a

©123456789..

How many alignments can we skip? 2

2) Our pattern doesn’t match at /ater alignments



Boyer-Moore

Intuition: Learn from alignments to avoid others
P-word

I:There would have been a

How many alignments can we skip? 2

2) Our pattern doesn’t match at /ater alignments



Boyer-Moore

Intuition: Learn from alignments to avoid others

P:TAGAC
INGTAGATGGCTGATCGAGTAGCGGCG
= TAGA(C ======ssscccccccccccncnnn- >
How many alignments can we skip? 3

TAGAT ~__ TherelSaTin
TAGAC TAGAC'



Boyer-Moore

Intuition: Learn from alignments to avoid others
P-TAGAC
I:GTAGATGGCTGATCGAGTAGCGGCAG

TAGAC skip!
TAGAC skip!

TAGAC skip!
TAGAC

How many alignments can we skip? 3

TAGAT ~__ TherelSaTin



Boyer-Moore

Intuition: Learn from alignments to avoid others

P-AABBB

I:AAABABAAAAAAAAAAAAAAAAAA
=AABBB ========ssecccccccncnannn- >
How many alignments can we skip? 1

AABAB ' TherelSan Ain
AARBB '‘AAABB’!



Boyer-Moore

Intuition: Learn from alignments to avoid others
P-AABBB
I:AAABABAAAAAAAAAAAAAAAAAA

AABBB skip!
AABBDB thefirst match we encounter!

How many alignments can we skip? 1

AABAB ' TherelSan Ain
AARBB '‘AAABB’!



Boyer-Moore: Bad Character rule

Upon mismatch, skip alignments until (a) mismatch becomes a match, or (b) P moves past
mismatched character. (c) If there was no mismatch, don't skip

T: CCTTOTGCTACCTTTTGCGCGCGCGCGGAA
Step 1:
p: COTTTTGC Case (a)
Step 2- T: CCT@CTGCTACCTTTTGCGCGCGCGCGGAA
Pe b CCCTTTTGC Case (b)
A
T: CCTTCA)GCTACCTTTTGCGCGCGCGCGGAA
Step 3:
p: LWCCTTTTGC Case (b)
A
(etc)
J: CCTTCTGCTACCTTTTGCGCGCGCGCGGAA

Step 7: p: CCTTTTGC Case (c)

............................ )




Boyer-Moore: Bad Character rule

I: CCTTCTGCTACCTTTTGCGCGCGCGCGGAA

>tep 1: CCTTTTGEC i)
CCTTTTGC P:
ceny. T CCTTCTGCTACCTTTTGCGCGCGCGCGGAA
P < CCCTTTTGC
Gtep3: T CCTTCTGCTACCTTTTGCGCGCGCGCGGAA

p- CCCCTTTTGC

1

We skipped three alignments

skip!

Can we do anything to make this better?




Boyer-Moore: Bad Character rule

Which of the following alignments skips the most?

A)

C)

7'..
P:

TATAT..
B)
TAGAC
TAGAT...
. D)
AGAC

7'..
P:

TTGAT...
TAGAC

TAGTT..

TAGAC



Boyer-Moore: Bad Character rule improvement

Continue to test alignment from left-to-right
... but compare characters from right to left.
P TAGAC

IPGTAGATGGCTGATCGAGTAGCGGCG




Right-to-left-scanning w/ BC Rule

P: word
T:There would have been a
--------- WOPrd ====cccccccccccccaaay»
* ......
T: woul "~
P: word There is no’l'in

‘word’!

How many alignments do we skip?




Right-to-left-scanning w/ BC Rule

P:-word
I'There would have been a
--------- WOPd ==---eccccccccceana-
word
word
word

How many alignments do we skip? 3



Right-to-left-scanning w/ BC Rule

Upon mismatch, skip alignments until (a) mismatch becomes a match, or (b) P moves past
mismatched character. (c) If there was no mismatch, don't skip

Step 1: T: CCTT@TGCTACCTTTTGCGCGCGCGCGGAA
P COTTTTGC Case (a

Step 2: T: CCI‘TCTGCT@CCTTTTGCGCGCGCGCGGAA
P: t WCCTTTTGC Case (b)

. .o\_/(""

Step 3: T: CCTTCTGCTACCTTTTGCGCGCGCGCGGAA
P p. CCTTTTGC Case (0

Step 4: T: CCTTCTGCTACCTTTTGCGCGCGCGCGGAA
P P: CCTTTT(SS:-C Case (a)

(etc) \4




Right-to-left-scanning w/ BC Rule

................

Step 1 T CCTTCTGCTACCTTTTGCGCGCGCGCGGAA
' RECCTTTTGCE
Step 2- FECCTTCTGCTACCTTTTGCGCGCGCGCGGAA
P p CCTTTTGC
Step 3. FECCTTCTGCTACCTTTTGCGCGCGCGCGGAA
P2 p  CCTTTTGC

1

Up to step 3, we skipped 8 alignments

5 characters in T were never looked at




Right-to-left-scanning w/ BC Rule @

Learn from character comparisons to skip pointless alignments

1.When we hit a mismatch ¢, move P along until ¢

“Bad character rule”
becomes a match (or P moves past ¢)

2.Try alignments in one direction, but do character “Right-to-left
comparisons in opposite direction scanning”

How do we put the first two rules in practice?

Boyer, RS and Moore, JS. "A fast string searching algorithm." Communications of the ACM 20.10 (1977): 762-772.



Exact pattern matching w/ Boyer-Moore

Boyer Moore preprocesses the pattern

P

Preprocess T
~ O(|P])
Boyer-Moore =~ O(|P|+ |T|)

Find instances of Pin T

‘instances’: An exact, full length copy




Boyer-Moore: BC rule preprocessing

Preprocessing requirestwo args: P: TCGC 2:ACGT

The goal is to produce a table which tracks skips

p
T | C|G ]| C

= QO N| >




Boyer-Moore: BC rule preprocessing

Preprocessing requirestwo args: P: TCGC 2:ACGT

The goal is to produce a table which tracks skips

P

T| C| G| C J: ?2?22T2?2222?22?°?
P:TICGC

= QO N| >




Boyer-Moore: BC rule preprocessing

Preprocessing requirestwo args: P: TCGC 2:ACGT

The goal is to produce a table which tracks skips

P

T| C| G| C J: ?2?22T2?2222?22?°?
P:TICGC

= Q| N| >




Boyer-Moore: BC rule preprocessing

Preprocessing requirestwo args: P: TCGC 2:ACGT

The goal is to produce a table which tracks skips

P

T| C| G| C J: P?2?2A?22?22?22?22?°?
P: TCGC

= QO N| >




Boyer-Moore: BC rule preprocessing

Preprocessing requirestwo args: P: TCGC 2:ACGT

The goal is to produce a table which tracks skips

P

T |1 C| G| C J: PP?P2AR??2?2??°
3 FP: TCGC

= Q| N| >




Boyer-Moore: BC rule preprocessing

Preprocessing requirestwo args: P: TCGC 2:ACGT

The goal is to produce a table which tracks skips

P T: 22A2?22?2?2°?
T lclclc P- TCGC
Alo| 1] 213 T: 2?2C?2?222?°
clol - ol - P- TCGC
2 G lo 1l -1To0| T226222222
T -1o01l 11| 2 P: TCGC

T- 22722222 °?

P: TCGC




Boyer-Moore: BC rule preprocessing

Preprocessing requirestwoargs: P: BABAAAB 2: AB

Pattern

B|l|A|[B|A|[A]A]|B




Boyer-Moore: BC rule preprocessing

Preprocessing requirestwoargs: P: BABAAAB 2: AB

For each character p in pattern P

For each character c in alphabet 2

Find the closest previous instance of p (to the left of ¢).
Pattern

B|l|A|[B|A|[A]A]|B




Boyer-Moore: BC rule preprocessing

Preprocessing requirestwoargs: P: BABAAAB 2: AB

For each character p in pattern P

For each character c in alphabet 2

Find the closest previous instance of p (to the left of ¢).
Pattern

B|l|A|[B|A|[A]A]|B

Al O 1 0 1




Boyer-Moore: BC rule preprocessing

Preprocessing requirestwoargs: P: BABAAAB 2: AB

For each character p in pattern P

For each character c in alphabet 2

Find the closest previous instance of p (to the left of ¢).

Pattern
A A
1 0




Assignment 4: a_bmoore @

Learning Objective:
Implement preprocessing of patterns with Boyer-Moore*

Observe Boyer-Moore* efficiency as a heuristic

Consider: Optimal preprocessing is (| P|| 2 |). Can you code it?




Boyer-Moore: Using the BC Table

Try alignments from left-to-right and match characters from right-to-left

When we encounter a mismatch, skip the calculated number of alignments

P

clc|@] TTTTMTTITTTT
1 3 | P:@calC

N

| oo -

Haln| >
o
N




Boyer-Moore: Using the BC Table

Try alignments from left-to-right and match characters from right-to-left

When we encounter a mismatch, skip the calculated number of alignments

P
T C| G| C I: GGGGGGGGGAG
A 0 1 7 3 P: TCGC
5 C 0 0
G 0 1 - 0
T 0 1 2




Boyer-Moore: Using the BC Table

Try alignments from left-to-right and match characters from right-to-left

When we encounter a mismatch, skip the calculated number of alignments

P
T C| G| C I: AATCAATAGC
A 0 1 7 3 P: TCGC
5 C 0 0
G 0 1 - 0
T 0 1 2




Boyer-Moore: Tracking total skips

P - BBBB
Al A
ZAOO
B| o |1
T:BBBBB

I:BBBBBB




Boyer-Moore: Tracking total skips

I: BBBB

()

p
Al A|A
0
1




Assignment 4: a_bmoore

Learning Objective:
Implement preprocessing of patterns with Boyer-Moore*
Observe Boyer-Moore* efficiency as a heuristic

Consider: Our Boyer-Moore is theoretically slower than Z-algorithm.

But is it slower in practice? What is our total character comparisons?




A complete bonus lecture!




A better Boyer-Moore

Learn from character comparisons to skip pointless alignments

1.When we hit a mismatch ¢, move P along until ¢

“Bad character rule”
becomes a match (or P moves past ¢)

2.Try alignments in one direction, but do character “Right-to-left
comparisons in opposite direction scanning”

Isthis O(|P|+ |T])?

Boyer, RS and Moore, JS. "A fast string searching algorithm." Communications of the ACM 20.10 (1977): 762-772.



Worst-Case Bad Character rule

Upon mismatch, skip alignments until (a) mismatch becomes a match, or (b) P moves past
mismatched character. (c) If there was no mismatch, don't skip

I: AAAAAAAAAAAAAAAAAAAAAAAAAAAAA

Step 1:
P: AAA Case (c)

Step 2: T AAAAAAAAAAAAAAAAAAAAAAAAAAAAA

. P: AAA Case (c)
Step 3 T AAAAAAAAAAAAAAAAAAAAAAAAAAAAA

e .

P P: AAA Case (c)
Step 4 T- AAAAAAAAAAAAAAAAAAAAAAAAAAAAA

ep 4:

P: AAA Case (c)

(etc)

Using just bad character, O(| P || T|)



A better Boyer-Moore

The complete Boyer-Moore algorithm, with all refinements, is

O(|P|+|T|).

Refinements include:

- "strong" good suffix rule
- Galil rule

We will be covering the ‘weak’ good suffix rule

If interested in refinements, see Gusfield textbook (syllabus)
or contact me for details




“Weak” Good Suffix rule

Intuition: Learn from alignments to avoid others
P ACATAC

I TACAGACATACATGACAGTGACCA
“"ACATAC ~~=="="7==========727272°2°°

What does this alignment tell us?




“Weak” Good Suffix rule

Intuition: Learn from alignments to avoid others
P ACATAC

T:TACAGACATACATGACAGTGACCA
"ACATAC '"""""mmmmmmmsmsmsmmmmmmemes >

We only want to look at alignments that are at least as good as
our current alignment




“Weak” Good Suffix rule

Intuition: Learn from alignments to avoid others
P ACATAC

T:TACAGACATACATGACAGTGACCA
"ACATAC '"""""mmmmmmmsmsmsmmmmmmemes >

What does partial match (the suffix'AC’) tell us?

Any alignment that overlaps this region of the text must match the
suffix! So we can look for another ‘AC’ somewhere in the pattern!




“Weak” Good Suffix rule

Intuition: Learn from alignments to avoid others
P ACATAC

T:TACAGACATACATGACAGTGACCA

"ACATAC '"""""=mm=mommsmsmmmmmmemes >
ACATAC
ACATAC

ACATAC
ACATAC

Any alignment that overlaps this region of the text must match the
suffix! So we can look for another ‘AC’ somewhere in the pattern!




“Weak” Good Suffix rule

Intuition: Learn from alignments to avoid others

P ACATAC
I:TACAGACATACATGACAGTGACCA
"ACATAC '"""""=mm=mommsmsmmmmmmemes >
ACATAC
How many alignments do we skip? 3

Any alignment that overlaps this region of the text must match the
suffix! So we can look for another ‘AC’ somewhere in the pattern!



“Weak” Good Suffix rule

Intuition: Learn from alignments to avoid others
P: ATC
I:AGTAGCAGCACAGTAGCAGCTAGA

Any alignment that overlaps this region of the text must match the
suffix! So we can look for another somewhere in the pattern!

How many alignments do we skip?




“Weak” Good Suffix rule

Intuition: Learn from alignments to avoid others
P: ATC
I:AGTAGCAGCACAGTAGCAGCTAGA

Any alignment that overlaps this region of the text must match the
suffix! So we can look for another C somewhere in the pattern!

How many alignments do we skip? 2




“Weak” Good Suffix rule

Intuition: Learn from alignments to avoid others
P: GCAGC

T-AGTIAGCAGCACAGTAGCAGCTAGA
"GCAGC '"""TTrTTmmmmosssssmmmmmses >

Any alignment that overlaps this region of the text must match the
suffix! So we can look for another somewhere in the pattern!

How many alignments do we skip?




“Weak” Good Suffix rule

Intuition: Learn from alignments to avoid others
P: GCAGC

T'AGTAGCAGCACAGTAGCAGCTAGA
""GCAGC """"TTTTTTmmmmmsmssmmmmsses >
G g 'é‘ i g . This is a full length match!
GCAGC‘///
GCAGC
GCAGC

How many alignments do we skip?




“Weak” Good Suffix rule

Intuition: Learn from alignments to avoid others
P: GCAGC

T-AGTIAGCAGCACAGTAGCAGCTAGA
"GCAGC '"""TTrTTmmmmosssssmmmmmses >

Any alignment that overlaps this region of the text must match the
suffix! So we can look for another somewhere in the pattern!

How many alignments do we skip?




“Weak” Good Suffix rule

Intuition: Learn from alignments to avoid others
P: GCAGC

T-AGTIAGCAAGCACAGTAGCAGCTAGA
"GCAGC ""mmmTTTTTTmmmmmssmmmmmses >
GCAGC

Any alignment that overlaps this region of the text must match
the suffix ... or have a prefix-suffix partial match!

How many alignments do we skip?



“Weak” Good Suffix rule @

Let t = longest suffix match at alignment; skip until (a) we find another
instance of t or (b) P moves past t

}. .........

1
I: CGTGCCTACTTACTTACTTACTTACGCGAA

Step 1:
pP:. CTTACTTAC o . o
t occurs in its entirety to the left within P
bommeeennneee t ---------- |
Step 2: I: CGTGCCITACTTACQTTACTTACTTACGCGAA
P CTTACQTTAC
prefix of P matches a suffix of t
Step 3: I: CGTGCCTACTTACTTACTTACTTACGCGAA

CTTACTTAC

An instance of t is either a full match to the left within P
or a prefix of P matches a suffix of t



Boyer-Moore: Putting it together

How to combine bad character and good suffix rules?

T: GTTATAGCTGATCGCGGCGTAGCGGCGAA

P: ‘GTAGCGGCG
~v

How many characters does bad character skip? 2 characters

T: GTTATAGCTGATCGCGGCGTAGCGGCGAA
P: GTAGCGGCQG

How many characters does good suffix skip? 7 characters

Take the maximum (7)!



Boyer-Moore: Putting it together

Use bad character or good suffix rule, whichever skips more

Step 1: T: GTTATAGCGATCGCGGCGTAGCGGCGAA
P GIAGCGGCG bc: 6, gs: O bad character

Step 2: T.‘GTTATAGCTGATGCGGCGTAGCGGCGAA
| P: GTAG@GGCG bc: 0, gs: 2 good suffix

Step 3: T: GTTATAGCTGATGCGGCGTAGCGGCGAA
i P: :...:GTAGCGGCG bc: 2, gs: 7 good suffix

Step 4- I: GTTATAGCTGATCGCGGCGTAGCGGCGAA

P P: GTAGCGGCG




Boyer-Moore: Putting it together

11 characters of T ignored completely!

EEENEENN NNN
I: GTTATAGCTGATCGCGGCGTAGCGGCGAA

Step 1:
P GTAGCGGCG
Step 2: T:- GTTATAGCTGATCGCGGCGTAGCGGCGAA
P GTAGCGGCG
Step 3: T GTTATAGCTGATCGCGGCGTAGCGGCGAA
P> GTAGCGGCG
T GTTATAGCTGATCGCGGCGTAGCGGCGAA
Step 4:

GTAGCGGCG
ENEEEE NN EEENNNN

Skipped 15 alignments




Boyer-Moore @

Learn from character comparisons to skip pointless alignments

1.When we hit a mismatch ¢, move P along until ¢

“Bad character rule”
becomes a match (or P moves past ¢)

2. Try alignments in one direction, but do character “Right-to-left
comparisons in opposite direction scanning”

3.When we move P along, make sure characters
that matched in the last alignment also match in “Good suffix rule”
the next alignment

Boyer, RS and Moore, JS. "A fast string searching algorithm." Communications of the ACM 20.10 (1977): 762-772.



