CS 225

Data Structures

October 13 - AVL Applications
 G Carl Evans

Why Balanced BST?

Summary of Balanced BST

Pros:

- Running Time:
- Improvement Over:
- Great for specific applications:

Every Data Structure So Far

	Unsorted Array	Sorted Array	Unsorted List	Sorted List	Binary Tree	BST	AVL
Find							
Insert							
Remove							
Traverse							

Summary of Balanced BST

Cons:

- Running Time:
- In-memory Requirement:

Iterators

Why do we care?

```
DFS dfs(...);
for ( ImageTraversal::Iterator it = dfs.begin(); it != dfs.end(); ++it ) {
    std::cout << (*it) << std::endl;
}
```


Iterators

Why do we care?

```
DFS dfs(...);
for ( ImageTraversal::Iterator it = dfs.begin(); it != dfs.end(); ++it ) {
    std::cout << (*it) << std::endl;
}
```

DFS dfs(...);
for (const Point \& p : dfs) \{
std: :cout $\ll \mathrm{p} \ll$ std: :endl;
\}

Iterators

Why do we care?

```
DFS dfs(...);
for ( ImageTraversal::Iterator it = dfs.begin(); it != dfs.end(); ++it ) {
    std::cout << (*it) << std::endl;
}
```

```
DFS dfs(...);
for ( const Point & p : dfs ) {
    std::cout << p << std::endl;
}
```

```
ImageTraversal & traversal = /* ... */;
for ( const Point & p : traversal ) {
    std::cout << p << std::endl;
}
```


CS 225 Office Hours

Office Hours

- Must have online contact info
- Must have a specific question
- We will remove students that don't do the above
- Purpose to get you unstuck not to fix your code

CS 225 Final Project

Working with data and using graphs

The Internet 2003

The OPTE Project (2003)
Map of the entire internet; nodes
are routers; edges are connections.

Conflict-Free Final Exam Scheduling Graph Unknown Source
Presented by Cinda Heeren, 2016

"Rush Hour" Solution
Unknown Source
Presented by Cinda Heeren, 2016

Class Hierarchy At University of Illinois Urbana-Champaign
 A. Mori, W. Fagen-Ulmschneider, C. Heeren
 Graph of every course at UIUC; nodes are courses, edges are prerequisites
 http://waf.cs.illinois.edu/discovery/class_hi erarchy_at_illinois/

MP Collaborations in CS 225
Unknown Source
Presented by Cinda Heeren, 2016

"Stanford Bunny"
Greg Turk and Mark Levoy (1994)

Final Project - Form a Team

- Team formation will be happening next week.
- If you don't find a team we will match you up.
- You must fill out the form next week

Range-based Searches

Q: Consider points in 1D: $p=\left\{p_{1}, p_{2}, \ldots, p_{n}\right\}$.
...what points fall in [11, 42]?

Tree construction:

Range-based Searches

Balanced BSTs are useful structures for range-based and nearest-neighbor searches.

Q: Consider points in 1D: $\mathbf{p}=\left\{\mathbf{p}_{1}, \mathbf{p}_{2}, \ldots, \mathbf{p}_{n}\right\}$.
...what points fall in [11, 42]?

Ex:

Range-based Searches

Q: Consider points in 1D: $p=\left\{p_{1}, p_{2}, \ldots, p_{n}\right\}$.
...what points fall in [11, 42]?

Ex:

Range-based Searches

Q: Consider points in 1D: $p=\left\{p_{1}, p_{2}, \ldots, p_{n}\right\}$.
...what points fall in [11, 42]?

Tree construction:

Range-based Searches

Range-based Searches

Range-based Searches

Q: Consider points in 1D: $p=\left\{p_{1}, p_{2}, \ldots, p_{n}\right\}$.
...what points fall in [11, 42]?

Range-based Searches

Running Time

Range-based Searches

Q: Consider points in 1D: $p=\left\{p_{1}, p_{2}, \ldots, p_{n}\right\}$.
...what points fall in [11, 42]?

Ex:

Range-based Searches

Consider points in 2D: $p=\left\{p_{1}, p_{2}, \ldots, p_{n}\right\}$.

Q: What points are in the rectangle:
$\left[\left(x_{1}, y_{1}\right),\left(x_{2}, y_{2}\right)\right]$?

Q: What is the nearest point to $\left(x_{1}, y_{1}\right)$?

Range-based Searches

Consider points in 2D: $\mathbf{p}=\left\{\mathrm{p}_{1}, \mathrm{p}_{2}, \ldots, \mathrm{p}_{\mathrm{n}}\right\}$.

Tree construction:

Range-based Searches

kD-Trees

kD-Trees

