CS 225

Data Structures

October 6-BST Balance

G Carl Evans

BST Analysis
Therefore, for all BST:
Lower bound: $h>=\mathbf{O}(\lg (n)$)
Upper bound: $\mathrm{h}<=\mathbf{O}(\mathrm{n})$

BST Analysis

The height of a BST depends on the order in which the data is inserted into it.

$$
\text { ex: } 1324576 \text { vs. } 4236715
$$

Q: How many different ways are there to insert keys into a BST?

Q: What is the average height of all the arrangements?

BST Analysis - Running Time

Operation	BST Average case	BST Worst case	Sorted array	Sorted List
find				
insert				
delete				
traverse				

Height-Balanced Tree

What tree makes you happier?

Height balance: $b=\operatorname{height}\left(T_{R}\right)-\operatorname{height}\left(T_{L}\right)$

A tree is height balanced if:

BST Rotation

We will perform a rotation that maintains two properties:
1.
2.

BST Rotation Summary

- Four kinds of rotations (L, R, LR, RL)
- All rotations are local (subtrees are not impacted)
- All rotations are constant time: O(1)
- BST property maintained

GOAL:

We call these trees:

AVL Trees

Three issues for consideration:

- Rotations
- Maintaining Height
- Detecting Imbalance

