CS 225

Data Structures

October 4 - BST Remove G Carl Evans

MP Redo

- There will be two redos of MPs this semester. The redo will be done one the code in your repo on the last day of class December $8^{\text {th }}$. The redo will change you grade to the following.

$$
\text { Max(old_grade, . } 90 \text { * new_grade) }
$$

Honors Section

Functional Data Structures in Clojure

- Website https://uiuc-cs199-225-fa21.netlify.app/
- Tonight, is the first lecture for the honors section zoom info https://uiuc-cs199-225-fa21.netlify.app/docs/

remove (40);

remove (25);

remove (10) ;

remove (13) ;

BST Analysis - Running Time

traverse

BST Analysis

Every operation that we have studied on a BST depends on the height of the tree: $\mathbf{O}(\mathrm{h})$.
...what is this in terms of \mathbf{n}, the amount of data?

We need a relationship between \mathbf{h} and \mathbf{n} :
$\mathbf{f}(\mathrm{h}) \leq \mathbf{n} \leq \mathrm{g}(\mathrm{h})$

BST Analysis

Q: What is the maximum number of nodes in a tree of height h ?

BST Analysis

Q: What is the minimum number of nodes in a tree of height h?

What is the maximum height for a tree of \mathbf{n} nodes?

BST Analysis
Therefore, for all BST:
Lower bound:

Upper bound:

BST Analysis

The height of a BST depends on the order in which the data is inserted into it.

$$
\text { ex: } 1324576 \text { vs. } 4236715
$$

Q: How many different ways are there to insert keys into a BST?

Q: What is the average height of all the arrangements?

BST Analysis

Q: How many different ways are there to insert keys into a BST?

Q: What is the average height of all the arrangements?

BST Analysis - Running Time

Operation	BST Average case	BST Worst case	Sorted array	Sorted List
find				
insert				
delete				
traverse				

Height-Balanced Tree

What tree makes you happier?

Height balance: $b=\operatorname{height}\left(T_{L}\right)-\operatorname{height}\left(T_{R}\right)$

A tree is height balanced if:

