Partition Property
Consider an arbitrary partition of the vertices on G into two subsets U and V.

Let e be an edge of minimum weight across the partition.

Then e is part of some minimum spanning tree.

Proof in CS 374!

Partition Property Algorithm

<table>
<thead>
<tr>
<th>Heap</th>
<th>Adj. Matrix</th>
<th>Adj. List</th>
</tr>
</thead>
</table>

Prim’s Minimum Spanning Tree Algorithm

```
Pseudocode for Prim’s MST Algorithm
1  PrimMST(G, s):
2      Input: G, Graph;
3          s, vertex in G, starting vertex of algorithm
4      Output: T, a minimum spanning tree (MST) of G
5      foreach (Vertex v : G):
6          d[v] = +inf
7          p[v] = NULL
8          d[s] = 0
9      PriorityQueue Q  // min distance, defined by d[v]
10     Q.buildHeap(G.vertices())
11     Graph T  // "labeled set"
12     repeat n times:
13        Vertex m = Q.removeMin()
14        T.add(m)
15        foreach (Vertex v : neighbors of m not in T):
16            if cost(v, m) < d[v]:
17                d[v] = cost(v, m)
18                p[v] = m
19     return T
```
Running Time of MST Algorithms

Kruskal's Algorithm:

Prim's Algorithm:

Q: What must be true about the connectivity of a graph when running an MST algorithm?

...what does this imply about the relationship between \(n \) and \(m \)?

<table>
<thead>
<tr>
<th>Kruskal’s MST</th>
<th>Prim’s MST</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Q: Suppose we built a new heap that optimized the decrease-key operation, where decreasing the value of a key in a heap updates the heap in amortized constant time, or \(O(1)^* \). How does that change Prim’s Algorithm runtime?

Final big-O Running Times of classical MST algorithms:

<table>
<thead>
<tr>
<th>Kruskal’s MST</th>
<th>Prim’s MST</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
</tr>
</tbody>
</table>

CS 225 – Things To Be Doing:

1. Get your projects approved and start work on them.
2. Daily POTDs are ongoing for +1 point /problem but pausing over break

Shortest Path Home: