

 CS_2
 #37: MSTs: Prim's Augustanting

 November 17, 2021 · G Carl Evans
#37: MSTs: Prim's Algorithm

Partition Property

Consider an arbitrary partition of the vertices on G into two subsets U and V. V U

B

2

E

Α

7

9

4

C

3

D

2

Let **e** be an edge of minimum weight across the partition.

Then **e** is part of some minimum spanning tree.

Partition Property Algorithm

	Adj. Matrix	Adj. List
Неар		
Unsorted Array		

Prim's Minimum Spanning Tree Algorithm

	Pseudocode for Prim's MST Algorithm			
1	PrimMST(G, s):			
2	Input: G, Graph;			
3	s, vertex in G, starting vertex of algorithm			
4	Output: T, a minimum spanning tree (MST) of G			
5				
6	foreach (Vertex v : G):			
7	d[v] = +inf			
8	p[v] = NULL			
9	d[s] = 0			
10				
11	PriorityQueue Q $//$ min distance, defined by d[v]			
12	Q.buildHeap(G.vertices())			
13	Graph T // "labeled set"			
14				
15	repeat n times:			
16	Vertex m = Q.removeMin()			
17	T.add(m)			
18	foreach (Vertex v : neighbors of m not in T):			
19	if $cost(v, m) < d[v]$:			
20	d[v] = cost(v, m)			
21	p[v] = m			
22				
23	return T			

Running Time of MST Algorithms

Shortest Path Home:

Kruskal's Algorithm:

Prim's Algorithm:

Q: What must be true about the connectivity of a graph when running an MST algorithm?

...what does this imply about the relationship between ${\bf n}$ and ${\bf m}$?

Kruskal's MST	Prim's MST

Q: Suppose we built a new heap that optimized the decrease-key operation, where decreasing the value of a key in a heap updates the heap in amortized constant time, or $O(1)^*$. How does that change Prim's Algorithm runtime?

Final big-O Running Times of classical MST algorithms:

Kruskal's MST	Prim's MST

CS 225 – Things To Be Doing:

- **1.** Get your projects approved and start work on them.
- 2. Daily POTDs are ongoing for +1 point /problem but pausing over break