

#37: MSTs: Kruskal + Prim's Algorithm

2 5 November 15, $2021 \cdot G$ Carl Evans

Kruskal's Algorithm

	Pseudocode for Kruskal's MST Algorithm
1	KruskalMST(G):
2	DisjointSets forest
3	foreach (Vertex v : G):
4	forest.makeSet(v)
5	
6	PriorityQueue Q // min edge weight
7	foreach (Edge e : G):
8	Q.insert(e)
9	
10	Graph $T = (V, \{\})$
11	
12	while $ T.edges() < n-1$:
13	Vertex $(u, v) = Q.removeMin()$
14	<pre>if forest.find(u) != forest.find(v):</pre>
15	T.addEdge(u, v)
16	<pre>forest.union(forest.find(u),</pre>
17	<pre>forest.find(v))</pre>
18	
19	return T

Kruskal's Running Time Analysis

We have multiple choices on which underlying data structure to use to build the Priority Queue used in Kruskal's Algorithm:

Priority Queue Implementations:	Неар	Sorted Array
Building : 6-8		
Each removeMin :13		

Based on our algorithm choice:

Priority Queue Implementation:	Total Running Time
Неар	
Sorted Array	

Reflections Why would we prefer a Heap?

Why would be prefer a Sorted Array?

Partition Property

Consider an arbitrary partition of the vertices on **G** into two subsets **U** and **V**.

Let **e** be an edge of minimum weight across the partition.

Then **e** is part of some minimum spanning tree.

Proof in CS 374!

Partition Property Algorithm

Prim's Minimum Spanning Tree Algorithm

	Pseudocode for Prim's MST Algorithm
1	PrimMST(G, s):
2	Input: G, Graph;
3	s, vertex in G, starting vertex of algorithm
4	Output: T, a minimum spanning tree (MST) of G
5	
6	foreach (Vertex v : G):
7	d[v] = +inf
8	p[v] = NULL
9	d[s] = 0
10	
11	PriorityQueue Q $//$ min distance, defined by d[v]
12	Q.buildHeap(G.vertices())
13	Graph T // "labeled set"
14	
15	repeat n times:
16	Vertex m = Q.removeMin()
17	T.add(m)
18	foreach (Vertex v : neighbors of m not in T):
19	if $cost(v, m) < d[v]$:
20	d[v] = cost(v, m)
21	p[v] = m
22	
23	return T

	Adj. Matrix	Adj. List
Неар		
Unsorted Array		

Running Time of MST Algorithms

Kruskal's Algorithm:

Prim's Algorithm:

Q: What must be true about the connectivity of a graph when running an MST algorithm?

...what does this imply about the relationship between **n** and **m**?

Kruskal's MST	Prim's MST

Q: Suppose we built a new heap that optimized the decrease-key operation, where decreasing the value of a key in a heap updates the heap in amortized constant time, or $O(1)^*$. How does that change Prim's Algorithm runtime?

Final big-O Running Times of classical MST algorithms:

Kruskal's MST	Prim's MST

CS 225 – Things To Be Doing:

- 1. mp_mazes due today!
- **2.** If your final project has not been approved get it revised.
- **3.** Daily POTDs are ongoing for +1 point /problem but pausing over break