
\#24: BTree Analysis
October 18, $2021 \cdot G$ Carl Evans

BTree Properties

For a BTree of order \mathbf{m} :

1. All keys within a node are ordered.
2. All leaves contain no more than $\mathbf{m - 1}$ nodes.
3. All internal nodes have exactly one more children than keys.
4. Root nodes can be a leaf or have $[\mathbf{2}, \mathbf{m}]$ children.
5. All non-root, internal nodes have [ceil(m/2), m] children.
6. All leaves are on the same level.

BTree Analysis

The height of the BTree determines maximum number of possible in search data.
...and the height of our structure:

Therefore, the number of seeks is no more than: \qquad -
...suppose we want to prove this!

BTree Proof \#1

In our AVL Analysis, we saw finding an upper bound on the height (\mathbf{h} given \mathbf{n}, aka $\mathbf{h}=\mathbf{f}(\mathbf{n})$) is the same as finding a lower bound on the keys (\mathbf{n} given \mathbf{h}, aka $\mathbf{f}^{\mathbf{1}}(\mathbf{h})$).

Goal: We want to find a relationship for BTrees between the number of keys (\mathbf{n}) and the height (h).

BTree Strategy:

1. Define a function that counts the minimum number of nodes in a BTree of a given order.
a. Account for the minimum number of keys per node.
2. Proving a minimum number of nodes provides us with an upper-bound for the maximum possible height.

Proof:

1a. The minimum number of nodes for a BTree of order \mathbf{m} at each level is as follows:
root:
level 1:
level 2:
level 3:
level h :

1b. The minimum total number of nodes is the sum of all levels:
2. The minimum number of keys:

[^0]
So, how good are BTrees?

Given a BTree of order 101, how much can we store in a tree of height $=4$?

Minimum:

Maximum:

Range-based Searches:

Q : Consider points in 1D: $\mathrm{p}=\left\{\mathrm{p}_{1}, \mathrm{p}_{2}, \ldots, \mathrm{p}_{\mathrm{n}}\right\}$.
...what points fall in [11, 42]?

Tree Construction:

Range-based Searches:

Running Time:

Extending to k-dimensions:

Consider points in 2D: $\mathbf{p}=\left\{\mathbf{p}_{\mathbf{1}}, \mathbf{p}_{\mathbf{2}}, \ldots, \mathbf{p}_{\mathbf{n}}\right\}$:

...what points are inside a range (rectangle)? ...what is the nearest point to a query point \mathbf{q} ?

kd-Tree Motivation:

First, let's try and divide our space up:

kd-Tree Construction:

How many dimensions exist in our input space?
How do we want to "order" our dimensions?

CS 225 - Things To Be Doing:

1. Mp_traversals due today
2. Potds ongoing
3. Exam 2 practice releases on Tuesday

[^0]: 3. Finally, we show an upper-bound on height:
