

#24: BTree Analysis October 18, 2021 · G Carl Evans

BTree Properties

For a BTree of order **m**:

- 1. All keys within a node are ordered.
- 2. All leaves contain no more than **m-1** nodes.
- 3. All internal nodes have exactly **one more children than keys**.
- 4. Root nodes can be a leaf or have [2, m] children.
- 5. All non-root, internal nodes have [ceil(m/2), m] children.
- 6. All leaves are on the same level.

BTree Analysis

The height of the BTree determines maximum number of ______ possible in search data.

... and the height of our structure:

Therefore, the number of seeks is no more than: ______.

...suppose we want to prove this!

BTree Proof #1

In our AVL Analysis, we saw finding an **upper bound** on the height (**h** given **n**, aka $\mathbf{h} = \mathbf{f}(\mathbf{n})$) is the same as finding a **lower bound** on the keys (**n** given **h**, aka $\mathbf{f}^{-1}(\mathbf{h})$).

Goal: We want to find a relationship for BTrees between the number of keys (**n**) and the height (**h**).

BTree Strategy:

- 1. Define a function that counts the minimum number of nodes in a BTree of a given order.
 - a. Account for the minimum number of keys per node.

2. Proving a minimum number of nodes provides us with an upper-bound for the maximum possible height.

Proof:

1a. The minimum number of <u>nodes</u> for a BTree of order **m** at each level is as follows:

root:

level 1:

level 2:

level 3:

level h:

1b. The minimum total number of <u>nodes</u> is the sum of all levels:

2. The minimum number of keys:

3. Finally, we show an upper-bound on height:

So, how good are BTrees?

Given a BTree of order 101, how much can we store in a tree of height=4?

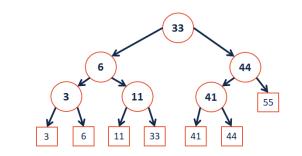
Minimum:

Maximum:

Range-based Searches:

Q: Consider points in 1D: $p = \{p_1, p_2, ..., p_n\}$what points fall in [11, 42]?

Tree Construction:

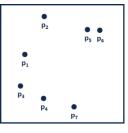


Range-based Searches:

Running Time:

Extending to k-dimensions:

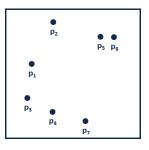
Consider points in 2D: $\mathbf{p} = {\mathbf{p}_1, \mathbf{p}_2, ..., \mathbf{p}_n}$:



...what points are inside a range (rectangle)? ...what is the nearest point to a query point **q**?

kd-Tree Motivation:

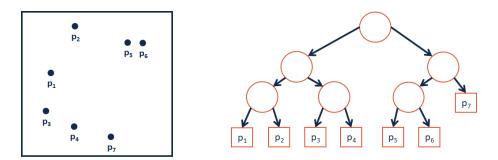
First, let's try and divide our space up:



kd-Tree Construction:

How many dimensions exist in our input space?

How do we want to "order" our dimensions?



CS 225 – Things To Be Doing:

- **1.** Mp_traversals due today
- 2. Potds ongoing
- 3. Exam 2 practice releases on Tuesday