

#5: Parameters
September 1, 2021 · G Carl Evans

Heap Memory – Allocating Arrays

heap-puzzle3.cpp
5
6
7
8
9
10
11
12
13
14

int *x;
int size = 3;

x = new int[size];

for (int i = 0; i < size; i++) {
 x[i] = i + 3;
}

delete[] x;

*: new[] and delete[] are identical to new and delete, except the
constructor/destructor are called on each object in the array.

Reference Variable
A reference variable is an alias to an existing variable. Modifying the
reference variable modifies the variable being aliased. Internally, a
reference variable maps to the same memory as the variable being
aliased. Three key ideas:
 1.

 2.

 3.

reference.cpp
3
4
5
6
7
8
9
10
11
12
13

int main() {
 int i = 7;
 int & j = i; // j is an alias of i

 j = 4; // j and i are both 4.
 std::cout << i << " " << j << std::endl;

 i = 2; // j and i are both 2.
 std::cout << i << " " << j << std::endl;
 return 0;
}

Memory and Function Calls
Suppose we want to join two Cubes together:

joinCubes-byValue.cpp
11
12
13
14
15
16
17
18
19
20
21
22

/*
 * Creates a new Cube that contains the exact volume
 * of the volume of the two input Cubes.
 */
Cube joinCubes(Cube c1, Cube c2) {
 double totalVolume = c1.getVolume() + c2.getVolume();

 double newLength = std::pow(totalVolume, 1.0/3.0);

 Cube result(newLength);
 return result;
}

By default, arguments are “passed by value” to a function. This means
that:

•

•

Alterative #1: Pass by Pointer

joinCubes-byPointer.cpp
15
16
17
18
19
20
21
22

Cube joinCubes(Cube * c1, Cube * c2) {
 double totalVolume = c1->getVolume() + c2->getVolume();

 double newLength = std::pow(totalVolume, 1.0/3.0);

 Cube result(newLength);
 return result;
}

Alternative #2: Pass by Reference

joinCubes-byReference.cpp
15
16
17
18
19
20
21
22

Cube joinCubes(Cube & c1, Cube & c2) {
 double totalVolume = c1.getVolume() + c2.getVolume();

 double newLength = std::pow(totalVolume, 1.0/3.0);

 Cube result(newLength);
 return result;
}

Contrasting the three methods:

 By Value By Pointer By Reference
Exactly what is
copied when the
function is invoked?

Does modification
of the passed in
object modify the
caller’s object?

Is there always a
valid object passed
in to the function?

Speed

Safety

Using the const keyword
1. Using const in function parameters:

joinCubes-by*-const.cpp
15 Cube joinCubes(const Cube s1, const Cube s2)
15 Cube joinCubes(const Cube *s1, const Cube *s2)
15 Cube joinCubes(const Cube &s1, const Cube &s2)

Best Practice: “All parameters passed by reference must be
labeled const.” – Google C++ Style Guide

2. Using const as part of a member functions’ declaration:

Cube.h
1
2
3
4
5
6
7
8
9
10
11
12
13
14

#pragma once

namespace cs225 {
 class Cube {
 public:
 Cube();
 Cube(double length);
 double getVolume() ;
 double getSurfaceArea() ;

 private:
 double length_;
 };
}

Cube.cpp
…
11
12
13
14
15
16
17
…

 double Cube::getVolume() {
 return length_ * length_ * length_;
 }

 double Cube::getSurfaceArea() {
 return 6 * length_ * length_;
 }

Returning from a function
Identical to passing into a function, we also have three choices on how
memory is used when returning from a function:

Return by value:

15 Cube joinCubes(const Cube &s1, const Cube &s2)

Return by reference:

15 Cube &joinCubes(const Cube &s1, const Cube &s2)

…remember: never return a reference to stack memory!

Return by pointer:

15 Cube *joinCubes(const Cube &s1, const Cube &s2)

…remember: never return a reference to stack memory!

CS 225 – Things To Be Doing:

1. Finish up mp_intro – Due Tuesday, Sep. 7 at 11:59pm
2. Complete lab_into, new lab this week in lab sections
3. First PotD out today due tomorrow at noon.

