
CS 225
Data Structures

November 6 – Disjoint Sets Finale + Graphs
G Carl Evans

Disjoint Sets ADT

•Maintain a collection S = {s0, s1, … sk}

• Each set has a representative member.

• API: void addelements(int num);
void union(int k1, int k2);
int find(int k);

Disjoint Sets

2 5 9 7 0 1 4 8 3 6

1 2 3 4 5 6 70

8 5 -1 -1 -1 3 -14

8 9

4 5

0

1

2

345

6

7

8
9

Disjoint Sets Find

Running time?
Structure: A structure similar to a linked list
Running time: O(h) < O(n)

What is the ideal UpTree?
Structure: One root node with every other node as it’s child
Running Time: O(1)

int DisjointSets::find() {
if (s[i] < 0) { return i; }
else { return _find(s[i]); }

}

1
2
3
4

2

5

9
83

1
7

Disjoint Sets – Smart Union

0 1 2 3

4

5

6

7

8 9 10

11

1 2 3 4 5 6 70

6 6 8 -4 10 7 -36

8 9

7 7

10 11

4 5

1 2 3 4 5 6 70

6 6 8 -4 10 7 -86

8 9

7 7

10 11

4 5

Union by height

Union by size

Idea: Keep the height of
the tree as small as
possible.

Idea: Minimize the
number of nodes that
increase in height

Both guarantee the height of the tree is:

Disjoint Sets Find and Union
int DisjointSets::find(int i) {
if (arr_[i] < 0) { return i; }
else { return _find(arr_[i]); }

}

1
2
3
4

void DisjointSets::unionBySize(int root1, int root2) {
int newSize = arr_[root1] + arr_[root2];

// If arr_[root1] is less than (more negative), it is the larger set;
// we union the smaller set, root2, with root1.
if (arr_[root1] < arr_[root2]) {
arr_[root2] = root1;
arr_[root1] = newSize;

}

// Otherwise, do the opposite:
else {
arr_[root1] = root2;
arr_[root2] = newSize;

}
}

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16

Path Compression

1

2

3

6

7

8

9

4

5

10

11

Disjoint Sets Find with Compression
int DisjointSets::find(int i) {
// At root return the index
if (arr_[i] < 0) {
return i;

}

// If not at the root recurse and on the return update parent
// to be the root.
else {
int root = find(arr_[i]);
arr_[i] = root;
return root;

}
}

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16

Disjoint Sets Analysis

The iterated log function:
The number of times you can take a log of a number.

log*(n) =
0 , n ≤ 1
1 + log*(log(n)) , n > 1

What is lg*(265536)?

Disjoint Sets Analysis

In an Disjoint Sets implemented with smart unions and
path compression on find:

Any sequence of m union and find operations result in the
worse case running time of O(____________),

where n is the number of items in the Disjoint Sets.

In Review: Data Structures

Array
- Sorted Array
- Unsorted Array

- Stacks
- Queues
- Hashing
- Heaps

- Priority Queues
- UpTrees

- Disjoint Sets

Linked
- Doubly Linked List
- Trees

- BTree
- Binary Tree

- Huffman Encoding
- kd-Tree
- AVL Tree

In Review: Data Structures

Array
- Sorted Array
- Unsorted Array

- Stacks
- Queues
- Hashing
- Heaps

- Priority Queues
- UpTrees

- Disjoint Sets

Linked
- Doubly Linked List
- Skip List
- Trees

- BTree
- Binary Tree

- Huffman Encoding
- kd-Tree
- AVL Tree

Graphs

The Internet 2003
The OPTE Project (2003)
Map of the entire internet; nodes
are routers; edges are connections.

HeapifyUp
BasicBlock
Graph

Generated using tools at
https://godbolt.org

https://godbolt.org/

“Rule of 7”
Unknown Source
Presented by Cinda Heeren, 2016

This graph can be used to quickly calculate
whether a given number is divisible by 7.

1. Start at the circle node at the top.
2. For each digit d in the given number, follow
d blue (solid) edges in succession. As you
move from one digit to the next, follow 1 red
(dashed) edge.
3. If you end up back at the circle node, your
number is divisible by 7.

3703

Conflict-Free Final Exam Scheduling Graph
Unknown Source
Presented by Cinda Heeren, 2016

Class Hierarchy At University of
Illinois Urbana-Champaign
A. Mori, W. Fagen-Ulmschneider, C. Heeren

Graph of every course at UIUC; nodes are
courses, edges are prerequisites

http://waf.cs.illinois.edu/discovery/class_hi
erarchy_at_illinois/

http://waf.cs.illinois.edu/discovery/class_hierarchy_at_illinois/

“Stanford Bunny”
Greg Turk and Mark Levoy (1994)

Graphs

To study all of these structures:
1. A common vocabulary
2. Graph implementations
3. Graph traversals
4. Graph algorithms

Graph Vocabulary

G = (V, E)
|V| = n
|E| = m

G1

G2
G3

Incident Edges:
I(v) = { {x, v} in E }

Degree(v): |I|

Adjacent Vertices:
A(v) = { x : {x, v} in E }

Path(G2): Sequence of vertices
connected by edges

Cycle(G1): Path with a
common begin and end
vertex.

Simple Graph(G): A graph with
no self loops or multi-edges.

(2, 5)

Graph Vocabulary

G = (V, E)
|V| = n
|E| = m

G1

G2
G3

Subgraph(G):
G’ = (V’, E’):

V’ ∈ V, E’ ∈ E, and
(u, v) ∈ E’ à u ∈ V’, v ∈ V’

Complete subgraph(G)
Connected subgraph(G)
Connected component(G)
Acyclic subgraph(G)
Spanning tree(G)

(2, 5)

Running times are often reported by n, the number of
vertices, but often depend on m, the number of edges.

How many edges? Minimum edges:
Not Connected:

Connected*:

Maximum edges:
Simple:

Not simple:

XU

V

W

Z

Y

a

c

b

e

d

f
g

h

Connected Graphs

Proving the size of a minimally connected graph

Theorem:
Every connected graph G=(V, E) has at least |V|-1 edges.

Thm: Every connected graph G=(V, E) has at least |V|-1 edges.

Proof: Consider an arbitrary, connected graph G=(V, E).

Suppose |V| = 1:
Definition: A connected graph of 1 vertex has 0 edges.

Theorem: |V|-1 edges è 1-1 = 0.

Inductive Hypothesis: For any j < |V|, any connected graph of j
vertices has at least j-1 edges.

Suppose |V| > 1:
1. Choose any edge:

2. Partition:
XU

V

W

Z

Y

a

c e

f

h

Graph ADT Functions:
- insertVertex(K key);
- insertEdge(Vertex v1, Vertex v2, K key);

- removeVertex(Vertex v);
- removeEdge(Vertex v1, Vertex v2);

- incidentEdges(Vertex v);
- areAdjacent(Vertex v1, Vertex v2);

- origin(Edge e);
- destination(Edge e);

Data:
- Vertices
- Edges
- Some data structure

maintaining the
structure between
vertices and edges.

X

V

W

Z

Y

b

e
d

f
g

h

Graph Implementation: Edge List

v

u

w

a c
b

z
d

insertVertex(K key);

removeVertex(Vertex v);

areAdjacent(Vertex v1, Vertex v2);

incidentEdges(Vertex v);

u

v

w

z

a

b

c

d

Graph Implementation: Adjacency Matrix

v

u

w

a c
b

z
d

insertVertex(K key);
removeVertex(Vertex v);
areAdjacent(Vertex v1, Vertex v2);
incidentEdges(Vertex v);

u

v

w

z

a

b

c

d

u v w z

u

v

w

z

