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November 6 – Disjoint Sets Finale + Graphs
G Carl Evans



Disjoint Sets ADT

•Maintain a collection S = {s0, s1, … sk}

• Each set has a representative member.

• API:   void addelements(int num);
void union(int k1, int k2);
int find(int k);



Disjoint Sets
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Disjoint Sets Find

Running time? 
Structure: A structure similar to a linked list
Running time: O(h) < O(n)

What is the ideal UpTree?
Structure: One root node with every other node as it’s child
Running Time:  O(1)

int DisjointSets::find() {
if ( s[i] < 0 ) { return i; }
else { return _find( s[i] ); } 

}
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Disjoint Sets – Smart Union
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Union by height

Union by size

Idea: Keep the height of 
the tree as small as 
possible.

Idea: Minimize the 
number of nodes that 
increase in height

Both guarantee the height of the tree is: 



Disjoint Sets Find and Union
int DisjointSets::find(int i) {
if ( arr_[i] < 0 ) { return i; }
else { return _find( arr_[i] ); } 

}
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void DisjointSets::unionBySize(int root1, int root2) {
int newSize = arr_[root1] + arr_[root2];

// If arr_[root1] is less than (more negative), it is the larger set;
// we union the smaller set, root2, with root1.
if ( arr_[root1] < arr_[root2] ) {
arr_[root2] = root1;
arr_[root1] = newSize;

}

// Otherwise, do the opposite:
else {
arr_[root1] = root2;
arr_[root2] = newSize;

}
}
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Path Compression
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Disjoint Sets Find with Compression
int DisjointSets::find(int i) {
// At root return the index
if ( arr_[i] < 0 ) { 
return i;

} 

// If not at the root recurse and on the return update parent
// to be the root.
else { 
int root = find( arr_[i] );
arr_[i] = root;
return root;

}
}
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Disjoint Sets Analysis

The iterated log function:
The number of times you can take a log of a number.

log*(n) = 
0                         , n ≤ 1
1 + log*(log(n)) , n > 1

What is lg*(265536)?



Disjoint Sets Analysis

In an Disjoint Sets implemented with smart unions and 
path compression on find:

Any sequence of m union and find operations result in the 
worse case running time of O( ____________ ),

where n is the number of items in the Disjoint Sets.



In Review: Data Structures

Array
- Sorted Array
- Unsorted Array

- Stacks
- Queues
- Hashing
- Heaps

- Priority Queues
- UpTrees

- Disjoint Sets

Linked
- Doubly Linked List
- Trees

- BTree
- Binary Tree

- Huffman Encoding
- kd-Tree
- AVL Tree



In Review: Data Structures

Array
- Sorted Array
- Unsorted Array

- Stacks
- Queues
- Hashing
- Heaps

- Priority Queues
- UpTrees

- Disjoint Sets

Linked
- Doubly Linked List
- Skip List
- Trees

- BTree
- Binary Tree

- Huffman Encoding
- kd-Tree
- AVL Tree

Graphs



The Internet 2003
The OPTE Project (2003)
Map of the entire internet;  nodes
are routers; edges are connections. 



HeapifyUp
BasicBlock
Graph

Generated using tools at 
https://godbolt.org

https://godbolt.org/


“Rule of 7”
Unknown Source
Presented by Cinda Heeren, 2016

This graph can be used to quickly calculate 
whether a given number is divisible by 7.

1. Start at the circle node at the top.
2. For each digit d in the given number, follow 
d blue (solid) edges in succession. As you 
move from one digit to the next, follow 1 red 
(dashed) edge.
3. If you end up back at the circle node, your 
number is divisible by 7.

3703



Conflict-Free Final Exam Scheduling Graph
Unknown Source
Presented by Cinda Heeren, 2016



Class Hierarchy At University of 
Illinois Urbana-Champaign
A. Mori, W. Fagen-Ulmschneider, C. Heeren

Graph of every course at UIUC; nodes are 
courses, edges are prerequisites

http://waf.cs.illinois.edu/discovery/class_hi
erarchy_at_illinois/

http://waf.cs.illinois.edu/discovery/class_hierarchy_at_illinois/


“Stanford Bunny”
Greg Turk and Mark Levoy (1994)





Graphs

To study all of these structures:
1. A common vocabulary
2. Graph implementations
3. Graph traversals
4. Graph algorithms



Graph Vocabulary

G = (V, E)
|V| = n
|E| = m

G1

G2
G3

Incident Edges:
I(v) = { {x, v} in E }

Degree(v): |I|

Adjacent Vertices:
A(v) = { x : {x, v} in E }

Path(G2): Sequence of vertices 
connected by edges

Cycle(G1): Path with a 
common begin and end 
vertex.

Simple Graph(G): A graph with 
no self loops or multi-edges.

(2, 5)



Graph Vocabulary

G = (V, E)
|V| = n
|E| = m

G1

G2
G3

Subgraph(G):
G’ = (V’, E’):

V’ ∈ V, E’ ∈ E, and
(u, v) ∈ E’ à u ∈ V’, v ∈ V’

Complete subgraph(G)
Connected subgraph(G)
Connected component(G)
Acyclic subgraph(G)
Spanning tree(G)

(2, 5)



Running times are often reported by n, the number of 
vertices, but often depend on m, the number of edges.

How many edges?   Minimum edges:
Not Connected:

Connected*:

Maximum edges:
Simple:

Not simple:
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Connected Graphs



Proving the size of a minimally connected graph 

Theorem:
Every connected graph G=(V, E) has at least |V|-1 edges.



Thm: Every connected graph G=(V, E) has at least |V|-1 edges.

Proof: Consider an arbitrary, connected graph G=(V, E).



Suppose |V| = 1:
Definition: A connected graph of 1 vertex has 0 edges.

Theorem: |V|-1 edges è 1-1 = 0.



Inductive Hypothesis: For any j < |V|, any connected graph of j
vertices has at least j-1 edges.



Suppose |V| > 1:
1. Choose any edge:

2. Partition:
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Graph ADT Functions:
- insertVertex(K key);
- insertEdge(Vertex v1, Vertex v2, K key);

- removeVertex(Vertex v);
- removeEdge(Vertex v1, Vertex v2);

- incidentEdges(Vertex v);
- areAdjacent(Vertex v1, Vertex v2);

- origin(Edge e);
- destination(Edge e);

Data:
- Vertices
- Edges
- Some data structure 

maintaining the 
structure between 
vertices and edges.
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Graph Implementation: Edge List

v
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insertVertex(K key);

removeVertex(Vertex v);

areAdjacent(Vertex v1, Vertex v2);

incidentEdges(Vertex v);
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Graph Implementation: Adjacency Matrix
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insertVertex(K key);
removeVertex(Vertex v);
areAdjacent(Vertex v1, Vertex v2);
incidentEdges(Vertex v);
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