

Data Structures

November 6 – Disjoint Sets Finale + Graphs G Carl Evans

Disjoint Sets ADT

- Maintain a collection $S = \{s_0, s_1, \dots, s_k\}$
- Each set has a representative member.
- API: void addelements(int num); void union(int k1, int k2); int find(int k);

Disjoint Sets

0	1	2	3	4	5	6	7	8	9
4	8	5	-1	-1	-1	3	-1	4	5

```
Disjoint Sets Find
```


Running time? Structure: A structure similar to a linked list Running time: O(h) < O(n)

What is the ideal UpTree? Structure: One root node with every other node as it's child Running Time: O(1)

Disjoint Sets – Smart Union

Both guarantee the height of the tree is:

Disjoint Sets Find and Union

```
1 int DisjointSets::find(int i) {
2   if ( arr_[i] < 0 ) { return i; }
3   else { return _find( arr_[i] ); }
4 }</pre>
```

```
void DisjointSets::unionBySize(int root1, int root2) {
 1
 2
     int newSize = arr [root1] + arr [root2];
 3
 4
     // If arr [root1] is less than (more negative), it is the larger set;
     // we union the smaller set, root2, with root1.
 5
 6
     if ( arr [root1] < arr [root2] ) {</pre>
 7
       arr [root2] = root1;
 8
       arr [root1] = newSize;
 9
     }
10
11
     // Otherwise, do the opposite:
     else {
12
13
       arr [root1] = root2;
       arr [root2] = newSize;
14
15
     }
16
```

Path Compression

Disjoint Sets Find with Compression

```
int DisjointSets::find(int i) {
 1
 2
     // At root return the index
 3
     if ( arr [i] < 0 ) {
 4
      return i;
 5
     }
 6
 7
     // If not at the root recurse and on the return update parent
     // to be the root.
 8
 9
     else {
10
       int root = find( arr [i] );
11
       arr [i] = root;
12
       return root;
13
     }
14
15
16
```

Disjoint Sets Analysis

```
The iterated log function:
The number of times you can take a log of a number.
```

```
log^{*}(n) = 0, n \le 1
1 + log^{*}(log(n)), n > 1
```

```
What is lg*(2<sup>65536</sup>)?
```

Disjoint Sets Analysis

In an Disjoint Sets implemented with smart **unions** and path compression on **find**:

Any sequence of **m union** and **find** operations result in the worse case running time of O(______), where **n** is the number of items in the Disjoint Sets.

In Review: Data Structures

Array

- Sorted Array
- Unsorted Array
 - Stacks
 - Queues
 - Hashing
 - Heaps
 - Priority Queues
 - UpTrees
 - Disjoint Sets

Linked

- Doubly Linked List
- Trees
 - BTree
 - Binary Tree
 - Huffman Encoding
 - kd-Tree
 - AVL Tree

In Review: Data Structures

Array

- Sorted Array
- Unsorted Array
 - Stacks
 - Queues
 - Hashing
 - Heaps
 - Priority Queues
 - UpTrees
 - Disjoint Sets

- Doubly Linked List

Graphs

- Skip List
- Trees

Linked

- BTree
- Binary Tree
 - Huffman Encoding
 - kd-Tree
 - AVL Tree

The Internet 2003

The OPTE Project (2003) Map of the entire internet; nodes are routers; edges are connections.

This graph can be used to quickly calculate whether a given number is divisible by 7.

1. Start at the circle node at the top.

2. For each digit d in the given number, follow
d blue (solid) edges in succession. As you
move from one digit to the next, follow 1 red
(dashed) edge.

3. If you end up back at the circle node, your number is divisible by 7.

3703

"Rule of 7"

Unknown Source Presented by Cinda Heeren, 2016

Conflict-Free Final Exam Scheduling Graph

Unknown Source Presented by Cinda Heeren, 2016

Class Hierarchy At University of Illinois Urbana-Champaign

A. Mori, W. Fagen-Ulmschneider, C. Heeren

Graph of every course at UIUC; nodes are courses, edges are prerequisites

http://waf.cs.illinois.edu/discovery/class_hi erarchy_at_illinois/

HAMLET

TROILUS AND CRESSIDA

Graphs

To study all of these structures:

- 1. A common vocabulary
- 2. Graph implementations
- 3. Graph traversals
- 4. Graph algorithms

Graph Vocabulary

Incident Edges:
 I(v) = { {x, v} in E }

Degree(v): ||

Adjacent Vertices: A(v) = { x : {x, v} in E }

Path(G₂): Sequence of vertices connected by edges

Cycle(G₁): Path with a common begin and end vertex.

Simple Graph(G): A graph with no self loops or multi-edges.

Graph Vocabulary

Subgraph(G): G' = (V', E'): $V' \in V, E' \in E, and$ $(u, v) \in E' \rightarrow u \in V', v \in V'$

Complete subgraph(G) Connected subgraph(G) Connected component(G) Acyclic subgraph(G) Spanning tree(G) Running times are often reported by **n**, the number of vertices, but often depend on **m**, the number of edges.

How many edges? **Minimum edges:** Not Connected:

Connected*:

Maximum edges: Simple:

Not simple:

deg(v

Connected Graphs

Proving the size of a minimally connected graph

Theorem:

Every connected graph **G**=(V, E) has at least |V|-1 edges.

Thm: Every connected graph G=(V, E) has at least |V|-1 edges.

Proof: Consider an arbitrary, connected graph **G=(V, E)**.

```
Suppose |V| = 1:
```

Definition: A connected graph of 1 vertex has 0 edges.

```
Theorem: |V| -1 edges \rightarrow 1-1 = 0.
```

Inductive Hypothesis: For any **j** < **|V|**, any connected graph of **j** vertices has at least **j**-1 edges.

Suppose |V| > 1: 1. Choose any edge:

2. Partition:

Graph ADT

Data:

- Vertices
- Edges
- Some data structure maintaining the structure between vertices and edges.

- insertVertex(K key);
- insertEdge(Vertex v1, Vertex v2, K key);
- removeVertex(Vertex v);
- removeEdge(Vertex v1, Vertex v2);
- incidentEdges(Vertex v);
- areAdjacent(Vertex v1, Vertex v2);
- origin(Edge e);
- destination(Edge e);

Graph Implementation: Edge List

removeVertex(Vertex v);

areAdjacent(Vertex v1, Vertex v2);

incidentEdges(Vertex v);

Graph Implementation: Adjacency Matrix

insertVertex(K key);
removeVertex(Vertex v);
areAdjacent(Vertex v1, Vertex v2);
incidentEdges(Vertex v);

	u	V	W	Z
u				
v				
w				
z				