CS 225

Data Structures

November 6 - Disjoint Sets Finale + Graphs
G Carl Evans

Disjoint Sets ADT

- Maintain a collection $S=\left\{s_{0}, s_{1}, \ldots s_{k}\right\}$
- Each set has a representative member.
- API: void addelements (int num); void union(int k1, int k2); int find(int k);

Disjoint Sets

0	1	2	3	4	5	6	7	8	9
4	8	5	-1	-1	-1	3	-1	4	5

Disjoint Sets Find

```
1 int DisjointSets::find() {
int DisjointSets::find() {
}
```

Running time?
Structure: A structure similar to a linked list
Running time: $O(h)<0(n)$

What is the ideal UpTree?
Structure: One root node with every other node as it's child Running Time: O(1)

Disjoint Sets - Smart Union

Union by height | 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| | 6 | 6 | 6 | 8 | -4 | 10 | 7 | -3 | 7 | 7 | 4 |

Idea: Keep the height of the tree as small as possible.

Union by size	0	1	2	3	4	5	6	7	8	9	10	11
	6	6	6	8	-4	10	7	-8	7	7	4	5

Idea: Minimize the
number of nodes that
increase in height
Both guarantee the height of the tree is:

Disjoint Sets Find and Union

```
int DisjointSets::find(int i) {
    if ( arr_[i] < 0 ) { return i; }
    else { return _find( arr_[i] ); }
}
```

```
void DisjointSets::unionBySize(int root1, int root2) {
    int newSize = arr_[root1] + arr_[root2];
    // If arr_[root1] is less than (more negative), it is the larger set;
    // we union the smaller set, root2, with root1.
    if ( arr_[root1] < arr_[root2] ) {
        arr_[root2] = root1;
        arr_[root1] = newSize;
    }
    // Otherwise, do the opposite:
    else {
        arr_[root1] = root2;
        arr_[root2] = newSize;
    }
}
```


Path Compression

Disjoint Sets Find with Compression

```
1 int DisjointSets::find(int i) {
    2 // At root return the index
    if (arr_[i] < 0 ) {
        return i;
    }
    // If not at the root recurse and on the return update parent
    // to be the root.
    else {
        int root = find( arr_[i] );
        arr_[i] = root;
        return root;
    }
}
15
16
```


Disjoint Sets Analysis

The iterated log function:
The number of times you can take a log of a number.

$$
\begin{array}{ll}
\log ^{*}(n)= & , n \leq 1 \\
0 & , \log ^{*}(\log (n)), \\
& n>1
\end{array}
$$

What is $\lg *\left(\mathbf{2}^{65536}\right)$?

Disjoint Sets Analysis

In an Disjoint Sets implemented with smart unions and path compression on find:

Any sequence of m union and find operations result in the worse case running time of O (\qquad where \mathbf{n} is the number of items in the Disjoint Sets.

In Review: Data Structures

Array

- Sorted Array
- Unsorted Array
- Stacks
- Queues
- Hashing
- Heaps
- Priority Queues
- UpTrees
- Disjoint Sets

Linked

- Doubly Linked List
- Trees
- BTree
- Binary Tree
- Huffman Encoding
- kd-Tree
- AVL Tree

In Review: Data Structures

Array

- Sorted Array
- Unsorted Array
- Stacks
- Queues
- Hashing
- Heaps
- Priority Queues
- UpTrees
- Disjoint Sets

Linked

- Doubly Linked List
- Skip List
- Trees
- BTree
- Binary Tree
- Huffman Encoding
- kd-Tree
- AVL Tree

The Internet 2003

The OPTE Project (2003)
Map of the entire internet; nodes
are routers; edges are connections.

This graph can be used to quickly calculate whether a given number is divisible by 7 .

1. Start at the circle node at the top.
2. For each digit \mathbf{d} in the given number, follow d blue (solid) edges in succession. As you move from one digit to the next, follow 1 red (dashed) edge.
3. If you end up back at the circle node, your number is divisible by 7 .

3703

"Rule of 7"

Unknown Source
Presented by Cinda Heeren, 2016

Conflict-Free Final Exam Scheduling Graph Unknown Source
Presented by Cinda Heeren, 2016

Class Hierarchy At University of Illinois Urbana-Champaign
A. Mori, W. Fagen-Ulmschneider, C. Heeren

Graph of every course at UIUC; nodes are courses, edges are prerequisites
http://waf.cs.illinois.edu/discovery/class_hi erarchy_at_illinois/

"Stanford Bunny"
Greg Turk and Mark Levoy (1994)

HAMLET

TROILUS AND CRESSIDA

Graphs

To study all of these structures:

1. A common vocabulary
2. Graph implementations
3. Graph traversals
4. Graph algorithms

> HAMLET TROILUS AND CRESSIDA

\square

Graph Vocabulary

$\mathrm{G}=(\mathrm{V}, \mathrm{E})$
$|V|=n$
$|E|=m$

Incident Edges:
$\mathrm{l}(\mathrm{v})=\{\{\mathrm{x}, \mathrm{v}\}$ in E$\}$
Degree(v): |I|
Adjacent Vertices:

$$
A(v)=\{x:\{x, v\} \text { in } E\}
$$

Path $\left(G_{2}\right)$: Sequence of vertices connected by edges

Cycle(G_{1}): Path with a common begin and end vertex.

Simple Graph(G): A graph with no self loops or multi-edges.

Graph Vocabulary

$\mathrm{G}=(\mathrm{V}, \mathrm{E})$
$|V|=n$
$|E|=m$

Subgraph(G):

$$
\begin{aligned}
& G^{\prime}=\left(V^{\prime}, E^{\prime}\right): \\
& V^{\prime} \in V, E^{\prime} \in E \text {, and } \\
& (u, v) \in E^{\prime} \rightarrow u \in V^{\prime}, v \in V^{\prime}
\end{aligned}
$$

Complete subgraph(G)
Connected subgraph(G)
Connected component(G) Acyclic subgraph(G)
Spanning tree(G)

Running times are often reported by \mathbf{n}, the number of vertices, but often depend on m, the number of edges.

How many edges? Minimum edges:
Not Connected:

Connected*:
Maximum edges:
Simple:
Not simple:

$$
\sum_{v \in Y} \operatorname{deg}(v)-
$$

Connected Graphs

Proving the size of a minimally connected graph

Theorem:
Every connected graph $\mathbf{G}=(\mathbf{V}, \mathbf{E})$ has at least |V|-1 edges.

Thm: Every connected graph $\mathbf{G}=(\mathbf{V}, \mathbf{E})$ has at least $|\mathbf{V}|-1$ edges.
Proof: Consider an arbitrary, connected graph G=(V, E).

Suppose |V| = 1:

Definition: A connected graph of 1 vertex has 0 edges.

Theorem: $|\mathrm{V}|-1$ edges $\boldsymbol{\rightarrow}$ 1-1 $=0$.

Inductive Hypothesis: For any $\mathbf{j}<|\mathbf{V}|$, any connected graph of \mathbf{j} vertices has at least \mathbf{j}-1 edges.

Suppose |V| > 1:

1. Choose any edge:
2. Partition:

Graph ADT
Data:

- Vertices
- Edges
- Some data structure maintaining the structure between vertices and edges.

Functions:

- insertVertex(K key);
- insertEdge(Vertex v1, Vertex v2, K key);
- removeVertex(Vertex v);
- removeEdge(Vertex v1, Vertex v2);
- incidentEdges(Vertex v);
- areAdjacent(Vertex v1, Vertex v2);
- origin(Edge e);
- destination(Edge e);

Graph Implementation: Edge List

insertVertex(K key);
removeVertex(Vertex v);
areAdjacent(Vertex v1, Vertex v2);
incidentEdges(Vertex v);

Graph Implementation: Adjacency Matrix

 insertVertex(K key); removeVertex(Vertex v); areAdjacent(Vertex v1, Vertex v2); incidentEdges(Vertex v);

