CS 225

Data Structures

October 16 – AVL Applications G Carl Evans

AVL Tree Analysis

We know: insert, remove and find runs in: ______.

We will argue that: h is _____.

 The number of nodes in the tree, f¹(h), will always be greater than c × g⁻¹(h) for all values where n > k.

Plan of Action

Since our goal is to find the lower bound on **n** given **h**, we can begin by defining a function given **h** which describes the smallest number of nodes in an AVL tree of height **h**:

Simplify the Recurrence N(h) = 1 + N(h - 1) + N(h - 2)

State a Theorem

Theorem: An AVL tree of height h has at least ______.

Proof:

I. Consider an AVL tree and let **h** denote its height.

II. Case: _____

An AVL tree of height _____ has at least _____ nodes.

Prove a Theorem

III. Case: _____

An AVL tree of height _____ has at least _____ nodes.

Prove a Theorem

IV. Case: ______
By an Inductive Hypothesis (IH):

We will show that:

An AVL tree of height _____ has at least _____ nodes.

Prove a Theorem

V. Using a proof by induction, we have shown that:

...and inverting:

AVL Runtime Proof

On Friday, we proved an upper-bound on the height of an AVL tree is **2** × **lg(n)** or **O(lg(n))**:

N(h) := Minimum # of nodes in an AVL tree of height h N(h) = 1 + N(h-1) + N(h-2)> $1 + 2^{h-1/2} + 2^{h-2/2}$ > $2 \times 2^{h-2/2} = 2^{h-2/2+1} = 2^{h/2}$

Theorem #1:

Every AVL tree of height h has at least 2^{h/2} nodes.

AVL Runtime Proof

On Friday, we proved an upper-bound on the height of an AVL tree is **2** × **lg(n)** or **O(lg(n))**:

of nodes (n) $\geq N(h) > 2^{h/2}$ n > 2^{h/2}
lg(n) > h/2
2 × lg(n) > h
h < 2 × lg(n) , for h ≥ 1

Proved: The maximum number of nodes in an AVL tree of height h is less than $2 \times lg(n)$.

Summary of Balanced BST

AVL Trees

- Max height: 1.44 * lg(n)
- Rotations:

Summary of Balanced BST

AVL Trees

- Max height: 1.44 * lg(n)
- Rotations:

Zero rotations on find One rotation on insert O(h) == O(lg(n)) rotations on remove

Red-Black Trees

- Max height: 2 * lg(n)
- Constant number of rotations on insert (max 2), remove (max 3).

Why Balanced BST?

Summary of Balanced BST

Pros:

- Running Time:
 - Improvement Over:

- Great for specific applications:

Summary of Balanced BST

Cons:

- Running Time:

- In-memory Requirement:

C++ provides us a balanced BST as part of the standard library:

```
std::map<K, V> map;
```

V & std::map<K, V>::operator[](const K &)

V & std::map<K, V>::operator[](const K &)

std::map<K, V>::erase(const K &)

iterator std::map<K, V>::lower_bound(const K &); iterator std::map<K, V>::upper_bound(const K &);

CS 225 -- Course Update

Your grades can now be viewed on moodle (<u>https://learn.illinois.edu/</u>)

We will discuss the grades for the course as a whole (ex: average, etc) in lecture on Wednesday.

Iterators

Why do we care?

```
1 DFS dfs(...);
2 for (ImageTraversal::Iterator it = dfs.begin(); it != dfs.end(); ++it ) {
3 std::cout << (*it) << std::endl;
4 }
```

Iterators

Why do we care?

```
1 DFS dfs(...);
2 for (ImageTraversal::Iterator it = dfs.begin(); it != dfs.end(); ++it ) {
3 std::cout << (*it) << std::endl;
4 }
```

```
1 DFS dfs(...);
2 for ( const Point & p : dfs ) {
3 std::cout << p << std::endl;
4 }
```

Iterators

Why do we care?

```
1 DFS dfs(...);
2 for ( ImageTraversal::Iterator it = dfs.begin(); it != dfs.end(); ++it ) {
3 std::cout << (*it) << std::endl;
4 }
```

```
1 DFS dfs(...);
2 for ( const Point & p : dfs ) {
3 std::cout << p << std::endl;
4 }
```

```
1 ImageTraversal & traversal = /* ... */;
2 for ( const Point & p : traversal ) {
3 std::cout << p << std::endl;
4 }
```

Every Data Structure So Far

	Unsorted Array	Sorted Array	Unsorted List	Sorted List	Binary Tree	BST	AVL
Find							
Insert							
Remove							
Traverse							

Q: Consider points in 1D: $p = \{p_1, p_2, ..., p_n\}$what points fall in [11, 42]?

Tree construction:

Balanced BSTs are useful structures for range-based and nearest-neighbor searches.

Q: Consider points in 1D: $\mathbf{p} = {\mathbf{p}_1, \mathbf{p}_2, ..., \mathbf{p}_n}$what points fall in [11, 42]?

Q: Consider points in 1D: $p = \{p_1, p_2, ..., p_n\}$what points fall in [11, 42]?

Q: Consider points in 1D: $p = \{p_1, p_2, ..., p_n\}$what points fall in [11, 42]?

Tree construction:

Q: Consider points in 1D: $p = \{p_1, p_2, ..., p_n\}$what points fall in [11, 42]?

Running Time

Q: Consider points in 1D: $p = \{p_1, p_2, ..., p_n\}$what points fall in [11, 42]?

Consider points in 2D: $p = \{p_1, p_2, ..., p_n\}$.

Q: What points are in the rectangle: [(x₁, y₁), (x₂, y₂)]?

Q: What is the nearest point to (x_1, y_1) ?

Consider points in 2D: $\mathbf{p} = {\mathbf{p}_1, \mathbf{p}_2, ..., \mathbf{p}_n}$.

Tree construction:

kD-Trees

kD-Trees

