CS 225

Data Structures

October 16-AVL Applications

G Carl Evans

AVL Tree Analysis
We know: insert, remove and find runs in: \qquad .

We will argue that: h is \qquad .

AVL Tree Analysis

- The number of nodes in the tree, $\mathbf{f}^{-1}(\mathbf{h})$, will always be greater than $\mathbf{c} \times \mathbf{g}^{-1}(\mathbf{h})$ for all values where $\mathbf{n}>\mathbf{k}$.

Plan of Action

Since our goal is to find the lower bound on \mathbf{n} given \mathbf{h}, we can begin by defining a function given \mathbf{h} which describes the smallest number of nodes in an AVL tree of height \mathbf{h} :

Simplify the Recurrence $\mathbf{N}(\mathrm{h})=1+\mathrm{N}(\mathrm{h}-1)+\mathrm{N}(\mathrm{h}-2)$

State a Theorem

Theorem: An AVL tree of height h has at least \qquad .

Proof:
I. Consider an AVL tree and let \mathbf{h} denote its height.
II. Case: \qquad
\qquad has at least \qquad nodes.

Prove a Theorem

III. Case:
\qquad has at least \qquad nodes.

Prove a Theorem

IV. Case:

By an Inductive Hypothesis (IH):

We will show that:
\qquad has at least \qquad nodes.

Prove a Theorem

V. Using a proof by induction, we have shown that:
...and inverting:

AVL Runtime Proof

On Friday, we proved an upper-bound on the height of an AVL tree is $\mathbf{2 \times \operatorname { l g } (n)}$ or $\mathbf{O}(\boldsymbol{\operatorname { l g }}(\mathbf{n}))$:
$N(h):=$ Minimum \# of nodes in an AVL tree of height h
$N(h)=1+N(h-1)+N(h-2)$
$>1+2^{\mathrm{h}-1 / 2+} 2^{\mathrm{h}-2 / 2}$
$>2 \times 2^{\mathrm{h}-2 / 2=} 2^{\mathrm{h}-2 / 2+1}=2^{\mathrm{h} / 2}$

Theorem \#1:
Every AVL tree of height h has at least $2^{\mathrm{h} / 2}$ nodes.

AVL Runtime Proof

On Friday, we proved an upper-bound on the height of an $A V L$ tree is $\mathbf{2 \times \operatorname { l g } (n)}$ or $\mathbf{O}(\lg (\mathbf{n}))$:

$$
\begin{aligned}
& \# \text { of nodes }(n) \geq N(h)>2^{h / 2} \\
& n>2^{h / 2} \\
& \lg (n)>h / 2 \\
& 2 \times \lg (n)>h \\
& h<2 \times \lg (n) \quad, \text { for } h \geq 1
\end{aligned}
$$

Proved: The maximum number of nodes in an AVL tree of height h is less than $2 \times \lg (n)$.

Summary of Balanced BST

AVL Trees

- Max height: 1.44 * $\lg (\mathrm{n})$
- Rotations:

Summary of Balanced BST

AVL Trees

- Max height: 1.44 * $\lg (\mathrm{n})$
- Rotations:

Zero rotations on find
One rotation on insert
$O(h)=O(\lg (n))$ rotations on remove

Red-Black Trees

- Max height: 2 * $\lg (\mathrm{n})$
- Constant number of rotations on insert (max 2), remove (max 3).

Why Balanced BST?

Summary of Balanced BST

Pros:

- Running Time:
- Improvement Over:
- Great for specific applications:

Summary of Balanced BST

Cons:

- Running Time:
- In-memory Requirement:

Red-Black Trees in C++

C++ provides us a balanced BST as part of the standard library: std::map<K, V> map;

Red-Black Trees in C++

V \& std::map<K, V>::operator[](const K \&)

Red-Black Trees in C++

V \& std::map<K, V>::operator[](const K \&)
std::map<K, V>::erase(const K \&)

Red-Black Trees in C++

iterator std::map<K, V>::lower_bound(const K \&); iterator std::map<K, V>::upper_bound(const K \&);

CS 225 -- Course Update

Your grades can now be viewed on moodle (https://learn.illinois.edu/)

We will discuss the grades for the course as a whole (ex: average, etc) in lecture on Wednesday.

Iterators

Why do we care?

```
DFS dfs(...);
for ( ImageTraversal::Iterator it = dfs.begin(); it != dfs.end(); ++it ) {
    std::cout << (*it) << std::endl;
}
```


Iterators

Why do we care?

```
DFS dfs(...);
for ( ImageTraversal::Iterator it = dfs.begin(); it != dfs.end(); ++it ) {
    std::cout << (*it) << std::endl;
}
```

DFS dfs(...);
for (const Point \& p : dfs) \{
std: :cout $\ll \mathrm{p} \ll$ std: :endl;
\}

Iterators

Why do we care?

```
DFS dfs(...);
for ( ImageTraversal::Iterator it = dfs.begin(); it != dfs.end(); ++it ) {
    std::cout << (*it) << std::endl;
}
```

```
DFS dfs(...);
for ( const Point & p : dfs ) {
    std::cout << p << std::endl;
}
```

```
ImageTraversal & traversal = /* ... */;
for ( const Point & p : traversal ) {
    std::cout << p << std::endl;
}
```


Every Data Structure So Far

	Unsorted Array	Sorted Array	Unsorted List	Sorted List	Binary Tree	BST	AVL
Find							
Insert							
Remove							
Traverse							

Range-based Searches

Q: Consider points in 1D: $p=\left\{p_{1}, p_{2}, \ldots, p_{n}\right\}$.
...what points fall in [11, 42]?

Tree construction:

Range-based Searches

Balanced BSTs are useful structures for range-based and nearest-neighbor searches.

Q: Consider points in 1D: $\mathbf{p}=\left\{\mathbf{p}_{1}, \mathbf{p}_{2}, \ldots, \mathbf{p}_{n}\right\}$.
...what points fall in [11, 42]?

Ex:

Range-based Searches

Q: Consider points in 1D: $p=\left\{p_{1}, p_{2}, \ldots, p_{n}\right\}$.
...what points fall in [11, 42]?

Ex:

Range-based Searches

Q: Consider points in 1D: $p=\left\{p_{1}, p_{2}, \ldots, p_{n}\right\}$.
...what points fall in [11, 42]?

Tree construction:

Range-based Searches

Range-based Searches

Range-based Searches

Q: Consider points in 1D: $p=\left\{p_{1}, p_{2}, \ldots, p_{n}\right\}$.
...what points fall in [11, 42]?

Range-based Searches

Running Time

Range-based Searches

Q: Consider points in 1D: $p=\left\{p_{1}, p_{2}, \ldots, p_{n}\right\}$.
...what points fall in [11, 42]?

Ex:

Range-based Searches

Consider points in 2D: $p=\left\{p_{1}, p_{2}, \ldots, p_{n}\right\}$.

Q: What points are in the rectangle:
$\left[\left(x_{1}, y_{1}\right),\left(x_{2}, y_{2}\right)\right]$?

Q: What is the nearest point to $\left(x_{1}, y_{1}\right)$?

Range-based Searches

Consider points in 2D: $\mathbf{p}=\left\{\mathrm{p}_{1}, \mathrm{p}_{2}, \ldots, \mathrm{p}_{\mathrm{n}}\right\}$.

Tree construction:

Range-based Searches

kD-Trees

kD-Trees

