

#33: Graph Implementation

November 11 2020 · G Carl Evans

Graph Implementation #1: Edge List

Vert.	Edges		
u	a		
v	b		
w	c		
Z	d		

Data Structures:

Vertex Collection:

Edge Collection:

Operations on an Edge List implementation:

insertVertex(K key):

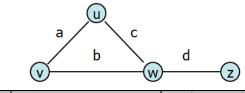
- What needs to be done?

removeVertex(Vertex v):

- What needs to be done?

incidentEdges(Vertex v):

- What needs to be done?


areAdjacent(Vertex v1, Vertex v2):

- Can this be faster than G.incidentEdges (v1).contains (v2)?

insertEdge(Vertex v1, Vertex v2, K key):

- What needs to be done?

Graph Implementation #2: Adjacency Matrix

Vert.	Edges	Adj. Matrix		
u v	a b	u v w z		
Z	d d	w		

Data Structures:

Operations on an Adjacency Matrix implementation:

insertVertex(K key):

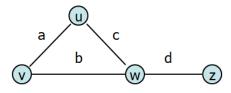
- What needs to be done?

removeVertex(Vertex v):

- What needs to be done?

incidentEdges(Vertex v):

- What needs to be done?


areAdjacent(Vertex v1, Vertex v2):

- Can this be faster than G.incidentEdges (v1).contains (v2)?

insertEdge(Vertex v1, Vertex v2, K key):

- What needs to be done?

Graph Implementation #3: Adjacency List

Vertex List	Edges
u	a
v	b
w	c
Z	d

Operations on an Adjacency Matrix implementation: insertVertex(K key):

removeVertex(Vertex v):	
incidentEdges(Vertex v):	
areAdjacent(Vertex v1, Vertex v2):	

insertEdge(Vertex v1, Vertex v2, K key):

Running Times of Classical Graph Implementations

	Edge List	Adj. Matrix	Adj. List
Space	n+m	n²	n+m
insertVertex	1	n	1
removeVertex	m	n	deg(v)
insertEdge	1	1	1
removeEdge	1	1	1
incidentEdges	m	n	deg(v)
areAdjacent	m	1	min(deg(v), deg(w))

Q: If we consider implementations of simple, connected graphs, what relationship between n and m?

- On connected graphs, is there one algorithm that underperforms the other two implementations?

Q: Is there clearly a single best implementation?

- Optimized for fast construction:
- Optimized for areAdjacent operations:

CS 225 – Things To Be Doing:

- 1. No lecture Friday Exam 4 CBTF Online
- 2. lab_dict released this week; due on Sunday, Nov. 15
- 3. mp_mazes final due date on Monday, Nov. 16
- 4. POTD today!