

#32: Disjoint Sets Finale + Graphs Intro

November 6, 2019 \cdot *G* Carl Evans

Smart Union Implementation:

DisjointSets.cpp (partial)			
1	<pre>void DisjointSets::unionBySize(int root1, int root2) {</pre>		
2	<pre>int newSize = arr_[root1] + arr_[root2];</pre>		
3			
4	<pre>// If arr_[root1] is less than (more negative), it is the</pre>		
5	<pre>// larger set; we union the smaller set, root2, with root1.</pre>		
6	<pre>if (arr_[root1] < arr_[root2]) {</pre>		
7	<pre>arr_[root2] = root1;</pre>		
8	<pre>arr_[root1] = newSize;</pre>		
9	}		
10	<pre>// Otherwise, do the opposite:</pre>		
11	else {		
12	<pre>arr_[root1] = root2;</pre>		
13	<pre>arr [root2] = newSize;</pre>		
14	}		
15	}		

How do we improve this?

Running Time:

- Worst case running time of find(k):
- Worst case running time of union(r1, r2), given roots:
- New function: "Iterated Log":

log*(n) :=

- Overall running time:
 - A total of **m** union/find operation runs in:

A Review of Major Data Structures so Far

Array-based	List/Pointer-based
- Sorted Array	- Singly Linked List
- Unsorted Array	- Doubly Linked List
- Stacks	- Skip Lists
- Queues	- Trees
- Hashing	- BTree
- Heaps	- Binary Tree
- Priority Queues	- Huffman Encoding
- UpTrees	- kd-Tree
- Disjoint Sets	- AVL Tree

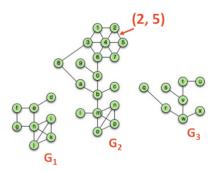
Motivation:

Graphs are awesome data structures that allow us to represent an enormous range of problems. To study these problems, we need:

- 1. A common vocabulary to talk about graphs
- 2. Implementation(s) of a graph
- 3. Traversals on graphs
- 4. Algorithms on graphs

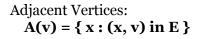
Graph Vocabulary

Consider a graph **G** with vertices **V** and edges **E**, **G**=(**V**,**E**).



Incident Edges: I(v) = { (x, v) in E }

Degree(v): |I|



Path(G₂): Sequence of vertices connected by edges

Cycle(G₁): Path with a common begin and end vertex.

Simple Graph(G): A graph with no self loops or multi-edges.

Subgraph(G): **G' = (V', E')**: V' \in V, E' \in E, and (u, v) \in E \rightarrow u \in V', v \in V' Graphs that we will study this semester include: Complete subgraph(G) Connected subgraph(G) Connected component(G) Acyclic subgraph(G) Spanning tree(G)

Size and Running Times

Running times are often reported by **n**, the number of vertices, but often depend on **m**, the number of edges.

For arbitrary graphs, the **minimum** number of edges given a graph that is:

Not Connected:

Minimally Connected*:

The **maximum** number of edges given a graph that is:

Simple:

Not Simple:

The relationship between the degree of the graph and the edges:

Proving the Size of a Minimally Connected Graph

Theorem: Every connected graph G=(V, E) has at least |V|-1 edges. <u>Proof of Theorem</u> Consider an arbitrary, connected graph G=(V, E). <u>Suppose |V| = 1:</u> <u>Inductive Hypothesis</u>: For any j < |V|, any connected graph of j vertices has at lest j-1 edges.

<u>Suppose |V| > 1:</u>

1. Choose any vertex:

- -
- _

2. Partitions:

Graph ADT

Data	Functions
1. Vertices	<pre>insertVertex(K key);</pre>
	<pre>insertEdge(Vertex v1, Vertex v2,</pre>
2. Edges	K key);
a Cama data atmustura	<pre>removeVertex (Vertex v) ;</pre>
3. Some data structure maintaining the	<pre>removeEdge(Vertex v1, Vertex v2);</pre>
structure between	incidentEdges(Vertex v);
vertices and edges.	areAdjacent(Vertex v1, Vertex v2);
	origin(Edge e);
	<pre>destination(Edge e);</pre>

CS 225 – Things To Be Doing:

- 1. Exam 4 next Friday; Practice Exam Available Today!
- **2.** mp_mazes EC due Monday
- **3.** Daily POTDs are ongoing!

