

#26: Hashing: Collision Handling

October 25, 2019 · G Carl Evans

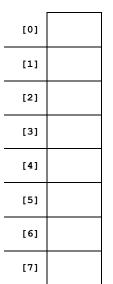
Every hash table contains three pieces:

- 1. A hash function, f(k): keyspace \rightarrow integer
- 2. An array.
- 3. A collision handling strategy.

Collision Handling Strategy #1: Separate Chaining

Example: $S = \{ 16, 8, 4, 13, 29, 11, 22 \}, |S| = n$ h(k) = k % 7, |Array| = N

[0]	
[1]	
[2]	
[3]	
[4]	
[5]	
[6]	
[7]	


Load Factor:

Running time of Separate Chaining:

-	Worst Case	SUHA
Insert		
Remove/Find		

Collision Handling Strategy #2: Probe-based Hashing

Example: $S = \{ 16, 8, 4, 13, 29, 11, 22 \}, |S| = n$ h(k) = k % 7, |Array| = N

Linear Probing:

Try h(k) = (k + 0) % 7, if full... Try h(k) = (k + 1) % 7, if full... Try h(k) = (k + 2) % 7, if full...

What problem occurs?

Double Hashing:

Example: $S = \{ 16, 8, 4, 13, 29, 11, 22 \}, |S| = n$ $h_1(k) = k \% 7, h_2(k) = 5 - (k \% 5), |Array| = N$

[0]	
[1]	
[2]	
[3]	
[4]	
[5]	
[6]	
[7]	

Double Hashing:

$$\begin{split} & \text{Try } h(k) = (k + + \, o^* h_2(k)) \ \% \ 7, \text{ if full...} \\ & \text{Try } h(k) = (k + + \, 1^* h_2(k)) \ \% \ 7, \text{ if full...} \\ & \text{Try } h(k) = (k + + \, 2^* h_2(k)) \ \% \ 7, \text{ if full...} \end{split}$$

•••

$$h(k, i) = (h_1(k) + i*h_2(k)) \% 7$$

Running Time:

Linear Probing:

Successful: $\frac{1}{2}(1 + \frac{1}{1-\alpha})$

Unsuccessful: $\frac{1}{2}(1 + \frac{1}{(1-\alpha)})^2$

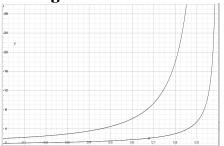
Double Hashing:

Successful: $1/\alpha * \ln(1/(1-\alpha))$

Unsuccessful: 1/(1-α)

Separate Chaining:

Successful: $1 + \alpha/2$


Unsuccessful: $1 + \alpha$

Running Time Observations:

1. As α increases:

2. If α is held constant:

Running Time Observations:

Linear Probing:

Successful: $\frac{1}{2}(1 + \frac{1}{1-\alpha})$

Unsuccessful: $\frac{1}{2}(1 + \frac{1}{(1-\alpha)})^2$

Double Hashing:

Successful: $1/\alpha * \ln(1/(1-\alpha))$

Unsuccessful: $1/(1-\alpha)$

ReHashing:

What happens when the array fills?

Better question:

Algorithm:

Which collision resolution strategy is better?

- Big Records:
- Structure Speed:

What structure do hash tables replace?

What constraint exists on hashing that doesn't exist with BSTs?

Why talk about BSTs at all?

Analysis of Dictionary-based Data Structures

	Hash Table		AVL	List
	Amortized	Worst Case	AVL	List
Find				
Insert				
Storage Space				

A Secret, Mystery Data Structure:

ADT:

insert

remove

isEmpty

CS 225 - Things To Be Doing:

- 1. mp_mosaic deadline is Monday night
- lab_hash due Sunday
- 3. Daily POTDs are ongoing!