

Every hash table contains three pieces:

1. A hash function, $\mathbf{f}(\mathbf{k})$. The hash function transforms a key from the keyspace into a small integer.
2. An array.
3. A third element that handles chaos when it occurs.

A Perfect Hash Function

...characteristics of this function?

All hash functions will consist of two parts:

- A hash:
- A compression:

Characteristics of a good hash function:

1. Computation Time:
2. Deterministic:
3. SUHA:

Towards a general-purpose hashing function:

Collision Handling Strategy \#1: Separate Chaining
Example: $\mathbf{S}=\{\mathbf{1 6}, \mathbf{8}, \mathbf{4}, \mathbf{1 3}, \mathbf{2 9}, \mathbf{1 1}, 22\},|\mathbf{S}|=\mathbf{n}$
$\mathbf{h}(\mathbf{k})=\mathbf{k} \% 7$,
|Array| $=\mathbf{N}$

[0]	
$[1]$	
$[2]$	
$[3]$	
$[4]$	
$[5]$	
$[6]$	
$[7]$	

Load Factor:

Running time of Separate Chaining:

	Worst Case	SUHA
Insert		
Remove/Find		

Collision Handling Strategy \#2: Probe-based Hashing

Example: $\mathbf{S}=\{\mathbf{1 6}, \mathbf{8}, \mathbf{4}, \mathbf{1 3}, \mathbf{2 9}, \mathbf{1 1}, \mathbf{2 2}\},|\mathbf{S}|=\mathbf{n}$

$$
\mathbf{h}(\mathbf{k})=\mathbf{k} \% 7
$$

\mid Array $\mid=\mathbf{N}$

$[0]$	
$[1]$	
$[2]$	
$[3]$	
$[4]$	
$[5]$	
$[6]$	
$[7]$	

Linear Probing:

Try $h(k)=(k+o) \% 7$, if full...
Try $h(k)=(k+1) \% 7$, if full... Try $h(k)=(k+2) \% 7$, if full...

What problem occurs?

Double Hashing:

Example: $\mathbf{S}=\{\mathbf{1 6}, \mathbf{8}, \mathbf{4}, \mathbf{1 3}, \mathbf{2 9}, \mathbf{1 1}, 22\},|\mathbf{S}|=\mathbf{n}$

$$
\mathbf{h}_{1}(\mathbf{k})=\mathbf{k} \% 7, \mathbf{h}_{2}(\mathbf{k})=5-(\mathbf{k} \% 5), \mid \text { Array } \mid=\mathbf{N}
$$

$[0]$	
$[1]$	
$[2]$	
$[3]$	
$[4]$	
$[5]$	
$[6]$	
$[7]$	

Double Hashing:

Try $h(k)=\left(k++0^{*} h_{2}(k)\right) \% 7$, if full...
Try $h(k)=\left(k++1^{*} h_{2}(k)\right) \% 7$, if full...
$\operatorname{Try} h(k)=\left(k++2^{*} h_{2}(k)\right) \% 7$, if full...
$h(k, i)=\left(h_{1}(k)+i^{*} h_{2}(k)\right) \% 7$

Running Time:

Linear Probing:

- Successful: $1 / 2(\mathbf{1}+\mathbf{1} /(\mathbf{1}-\alpha))$
- Unsuccessful: $\mathbf{1 / 2}(\mathbf{1}+\mathbf{1} /(\mathbf{1}-\alpha))^{\mathbf{2}}$

Double Hashing:

- Successful: $\mathbf{1} / \alpha$ * $\ln (\mathbf{1} /(\mathbf{1}-\alpha))$
- Unsuccessful: $\mathbf{1 / (1 - \alpha)}$

Separate Chaining:

- Successful: $\mathbf{1 + \alpha} / \mathbf{2}$
- Unsuccessful: $\mathbf{1 + \boldsymbol { \alpha }}$

Running Time Observations:

1. As $\boldsymbol{\alpha}$ increases:
2. If $\boldsymbol{\alpha}$ is held constant:

Running Time Observations:

Linear Probing:

Successful: $\mathbf{1 / 2 (1 + 1 / (1 - \alpha))}$
Unsuccessful: $1 / 2(\mathbf{1}+\mathbf{1} /(\mathbf{1 - \alpha}))^{\mathbf{2}}$

Double Hashing:

Successful: $\mathbf{1} / \alpha^{*} \ln (\mathbf{1} /(\mathbf{1}-\alpha))$
Unsuccessful: 1/(1-a)

CS 225 - Things To Be Doing:

1. MP Mosaics EC deadline tonight
2. Daily POTDs are ongoing!
