

#25: Hashing October 26, 2020 · *G Carl Evans*

Every hash table contains three pieces:

- 1. A **hash function**, **f(k)**. The hash function transforms a key from the keyspace into a small integer.
- 2. An array.
- 3. A third element that **handles chaos** when it occurs.

A Perfect Hash Function

... characteristics of this function?

All hash functions will consist of two parts:

- A hash:
- A compression:

Characteristics of a good hash function:

1. Computation Time:

2. Deterministic:

3. SUHA:

Towards a general-purpose hashing function:

Collision Handling Strategy #1: Separate Chaining

Example:
$$S = \{ 16, 8, 4, 13, 29, 11, 22 \}, |S| = n$$

 $h(k) = k \% 7, |Array| = N$

Load Factor:

Running time of Separate Chaining:

	Worst Case	SUHA
Insert		
Remove/Find		

Collision Handling Strategy #2: Probe-based Hashing Example: **S** = { **16**, **8**, **4**, **13**, **29**, **11**, **22** }, **|S**| = **n**

Linear Probing: Try h(k) = (k + 0) % 7, if full... Try h(k) = (k + 1) % 7, if full... Try h(k) = (k + 2) % 7, if full... ...

|Arrav| = N

What problem occurs?

Double Hashing:

Example: $S = \{ 16, 8, 4, 13, 29, 11, 22 \}, |S| = n$ $h_1(k) = k \% 7, h_2(k) = 5 - (k \% 5), |Array| = N$

Double Hashing: Try $h(k) = (k + + 0*h_2(k)) \% 7$, if full... Try $h(k) = (k + + 1*h_2(k)) \% 7$, if full... Try $h(k) = (k + + 2*h_2(k)) \% 7$, if full... ... $h(k, i) = (h_1(k) + i*h_2(k)) \% 7$

Running Time: Linear Probing:

- Successful: $\frac{1}{2}(1 + \frac{1}{1-\alpha})$
- Unsuccessful: $\frac{1}{2}(1 + \frac{1}{(1-\alpha)})^2$

Double Hashing:

- Successful: $1/\alpha * \ln(1/(1-\alpha))$
- Unsuccessful: $1/(1-\alpha)$

Separate Chaining:

- Successful: $1 + \alpha/2$
- Unsuccessful: $1 + \alpha$

Running Time Observations:

- 1. As α increases:
- 2. If α is held constant:

Running Time Observations:

Double Hashing: Successful: $1/\alpha * \ln(1/(1-\alpha))$ Unsuccessful: $1/(1-\alpha)$

CS 225 – Things To Be Doing:

- 1. MP Mosaics EC deadline tonight
- **2.** Daily POTDs are ongoing!