

#21: AVL Applications
October 16, 2020 · G Carl Evans

AVL – Proof of Runtime
Plan of Action:

Goal: Find a function that defines the lower bound on n given h.

Given the goal, we begin by defining a function that describes the
smallest number of nodes in an AVL of height h:

Theorem:
An AVL tree of height h has at least _____________________.

I. Consider an AVL tree and let h denote its height.

II. Case: ________________

III. Case: _________________

Inductive hypothesis (IH):

Proving our IH:

V. Using a proof by induction, we have shown that:

...and by inverting our finding:

Summary of Balanced BSTs:

Advantages Disadvantages

AVL Trees Red-Black Trees
Balanced BST

Max height: 1.44 * lg(n)
Q: Why is our proof 2*lg(n)?

Rotations:

Balanced BST
Functionally equivalent to AVL trees; all key
operations runs in O(h) time.

Max height: 2 * lg(n)

Rotations:

- find:

- insert:

- remove:

- find:

- insert:

- remove:

In CS 225, we learned AVL trees because they’re intuitive and I’m
certain we could have derived them ourselves given enough time. A
red-black tree is simply another form of a balanced BST that is also
commonly used.

Summary of Balanced BSTs:
(Includes both AVL and Red-Black Trees)

Advantages Disadvantages

Using a Red-Black Tree in C++
C++ provides us a balanced BST as part of the standard library:
 std::map<K, V> map;

The map implements a dictionary ADT. Primary means of access is
through the overloaded operator[]:
 V & std::map<K, V>::operator[](const K &)
 This function can be used for both insert and find!

Removing an element:
 void std::map<K, V>::erase(const K &);

Range-based searching:
 iterator std::map<K, V>::lower_bound(const K &);
 iterator std::map<K, V>::upper_bound(const K &);

Running Time of Every Data Structure So Far:

 Unsorted
Array

Sorted
Array

Unsorted
List

Sorted
List

Find

Insert

Remove

Traverse

 Binary Tree BST AVL
Find

Insert

Remove

Traverse

Range-based Searches:
Q: Consider points in 1D: p = {p1, p2, …, pn}.
 …what points fall in [11, 42]?

Range-based Searches:

Running Time:

