

#7: Overloading
September 9, 2020 · G Carl Evans

Destructor
The last and final member function called in the lifecycle of a class is
the destructor.

Purpose of a destructor:

The automatic destructor:

1. Like a constructor and copy constructor, an automatic
destructor exists only when no custom destructor is defined.

2. [Invoked]:

3. [Functionality]:

Custom Destructor:

Cube.h
5
6
7
8
9
10
11

class Cube {
 public:
 Cube(); // default ctor
 Cube(double length); // 1-param ctor
 Cube(const Cube & other); // custom copy ctor
 ~Cube(); // destructor, or dtor
 ...

…necessary if you need to delete any heap memory!

Overloading Operators
C++ allows custom behaviors to be defined on over 20 operators:

Arithmetic + - * / % ++ --
Bitwise & | ^ ~ << >>
Assignment =
Comparison == != > < >= <=
Logical ! && ||
Other [] () ->

General Syntax:

Adding overloaded operators to Cube:

Cube.h Cube.cpp
1
2
3
4
…
10
11
12
13
14
…

#pragma once

class Cube {
 public:
 // ...

 // ...

…
40
41
42
43
44
45
46
47
48
…

/* ... */

/* ... */

One Very Powerful Operator: Assignment Operator

Cube.h
 Cube & operator=(const Cube & other);

Cube.cpp
 Cube & Cube::operator=(const Cube & other) { ... }

Functionality Table:

 Copies an object Destroys an
object

Copy constructor

Copy Assignment
operator

Destructor

The Rule of Three
If it is necessary to define any one of these three functions in a class, it
will be necessary to define all three of these functions:

1.

2.

3.

Rvalue and Move Semantics

Cube.h
 Cube & operator=(const Cube && other) noexcept;

 Cube(Cube && other) noexcept;
Cube.cpp

 Cube & Cube::operator=(const Cube && other) noexcept{ ... }
 Cube(Cube && other) noexcept { ... }

Lvalue

Rvalue

Why Move?
1.

2.

The Rule of Five
If it is necessary to define any one of these five functions in a class, it
will be necessary to define all five of these functions:

1.

2.

3.

4.

5.

The Rule of Zero

CS 225 and Rule Three/Five/Zero
In CS 225 We will:

Inheritance
In nearly all object-oriented languages (including C++), classes can be
extended to build other classes. We call the class being extended the
base class and the class inheriting the functionality the derived
class.

CS 225 – Things To Be Doing:
1. Exam 1 in lecture this Friday!
2. lab_memory this week in labs (due Sunday)
3. MP2 released (EC due Monday)
4. Daily POTDs every M-F for daily extra credit!

