# CS 225 <br> Data Structures 

## December 9 - Delta-stepping (SSSP) G Carl Evans

## Simplified Delta-stepping Algorithm (SSSP)



```
Delta(G, s, delta):
    foreach (Vertex v : G):
        d[v] = +inf
        p[v] = NULL
    d[s] = 0
    B[0].push_back(s)
    i = 0
    while !B.empty()
        foreach( Vertex v : B[i] )
            foreach( Edge e : b )
                    relax = cost(u,v) + d[u]
                    if relax < d[v]
                            d[v] = relax
                            p[v] = u
                            B[relax/delta].pushback[v]
    i}=i+
```

$\Delta$-stepping: a parallelizable shortest path algorithm U. Meyer and P. Sanders *

|  |  | No. of vertices |  |  |  |
| :--- | :---: | :---: | :---: | :---: | :---: |
| Type | $p$ | k | 1 M | 2 M | 6 M |
| $\Delta$-stepping | $1 \cdot 10^{-4}$ | 60 | 852 | 1,770 | 5,445 |
| Boost Dijkstra | $1 \cdot 10^{-4}$ | 60 | 2,423 | 5,180 | 16,520 |
| $\Delta$-stepping | $1 \cdot 10^{-4}$ | 150 | 1,402 | 2,849 | 10,421 |
| Boost Dijkstra | $1 \cdot 10^{-4}$ | 150 | 5,860 | 11,724 | $7 \cdot 10^{5}$ |
| $\Delta$-stepping | $1 \cdot 10^{-2}$ | 60 | 922 | 2,026 | 7,029 |
| Boost Dijkstra | $1 \cdot 10^{-2}$ | 60 | 2,984 | 6,172 | 19,080 |
| $\Delta$-stepping | $1 \cdot 10^{-2}$ | 150 | 1,887 | 4,293 | 16,852 |
| Boost Dijkstra | $1 \cdot 10^{-2}$ | 150 | 6,524 | 13,312 | $2 \cdot 10^{6}$ |

Table 2: Timings in ms on a single core of Xeon E2680v3. $\Delta$-stepping was run with $\Delta=10$.

## Final Exam Review Session

- Implementations
- Edge List
- Adjacency Matrix
- Adjacency List
- Traversals
- Breadth First
- Depth First
- Minimum Spanning Tree
- Kruskal's Algorithm
- Prim's Algorithm
- Shortest Path
- Dijkstra's Algorithm
- Floyd-Warshall's Algorithm
... and this is just the beginning. The journey continues to CS 374!

