
CS 225
Data Structures

December 9 – Delta-stepping (SSSP)
G Carl Evans

Simplified Delta-stepping Algorithm (SSSP)
Delta(G, s, delta):
foreach (Vertex v : G):
d[v] = +inf
p[v] = NULL

d[s] = 0
B[0].push_back(s)

i = 0
while !B.empty()
foreach(Vertex v : B[i])

foreach(Edge e : b)
relax = cost(u,v) + d[u]
if relax < d[v]
d[v] = relax
p[v] = u
B[relax/delta].pushback[v]

i = i + 1

6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22

A
C

D

E

B

F G

H7

5
4

10
7

5

3

6

32

3

3

∆-stepping: a parallelizable shortest path algorithm U. Meyer and P. Sanders ∗

The most common way to generate such graphs is the Watts-

Strogatz model: first construct a regular ring lattice by con-
necting each node with its k closest neighbours; then, for
each edge in that graph, with probability p 2 (0, 1], rewire
one of its endpoints to a random node in the graph, such that
it does not result in a duplicate edge. This generation can be
done using Boost Graph Library.
The timings reported in Table 2 and Table 3 for small-world
graphs with p 2 {10�4, 10�2

}, k 2 {60, 100, 150} and
|V | 2 {5 ⇥ 105, 106, 2 ⇥ 106, 6 ⇥ 106} clearly show that
our implementation is efficient. Although � = 10 involves
additional work compared to Dijkstra’s algorithm, our im-
plementation is at least 2x faster on Xeon Phi and 2x-100x
faster on Xeon E2680v3 than the implementation of Dijk-
stra’s algorithm from the Boost Graph Library.

No. of vertices
Type p k 1M 2M 6M

�-stepping 1 · 10�4 60 852 1,770 5,445
Boost Dijkstra 1 · 10�4 60 2,423 5,180 16,520
�-stepping 1 · 10�4 150 1,402 2,849 10,421
Boost Dijkstra 1 · 10�4 150 5,860 11,724 7 · 105
�-stepping 1 · 10�2 60 922 2,026 7,029
Boost Dijkstra 1 · 10�2 60 2,984 6,172 19,080
�-stepping 1 · 10�2 150 1,887 4,293 16,852
Boost Dijkstra 1 · 10�2 150 6,524 13,312 2 · 106

Table 2: Timings in ms on a single core of Xeon E2680v3.
�-stepping was run with � = 10.

No. of vertices
Type p k 0.5M 1M 2M

�-stepping 1 · 10�4 60 4,117 8,739 16,902
Boost Dijkstra 1 · 10�4 60 9,798 19,144 39,911

Table 3: Timings in ms on a single core of Xeon Phi. The
�-stepping algorithm was run with � = 10. In our case a
single core on Xeon Phi is 8-10x slower than on E2680v3.

Delta. In general, the performance of �-stepping crucially
depends on the choice of the parameter �. Fig. 1 shows
timings depending on � for small-world graphs with size
|V | = 106, k = 60 and different rewiring probabilities p. On
24 cores of Xeon E2680v3, for p = 10�2, � = 1 performs
best, for p = 10�4 the best is � = 2 and for p = 10�5,
� = 3 is optimal. In the extreme case of p= 0, the runtime
monotonically decreases with increasing �.
We have also found that in order to be able to exploit the
additional parallelism that can be gained by using � > 1
there must not be an omp barrier inside the light relaxation
phase. During the relaxation of light edges, vertices might
be inserted into the current bucket in locations belonging to
another thread. Therefore, the parallelization strategy de-
scribed in Sec. 3 forces us to synchronize the threads before

entering the while loop in Alg. 1, lines 13-18. However, by
introducing a thread private bucket array in the inner loop,
this synchronization can be removed and traded for addi-
tional work, since now it is no longer guaranteed that a par-
ticular vertex is inserted into the current bucket by only one
thread. If a sufficient number of shortcuts to random loca-
tions is present, e.g. for p > 10�3, there is already enough
parallelism available due to the inherent graph structure and
we find that � = 1 is the best choice.

Fig. 1: Runtime with respect to � for a small-world graph
with 106 vertices and k=60. Experiments were carried out
using 24 cores on Xeon E2680v3. The 5, 95-percentiles de-
viate less than 1% of the mean (100 repetitions).

Fig. 2: Xeon: small-world graphs with 6 ·106 vertices, gen-
erated with the rewiring probability p and the nearest neigh-
bour parameter k. The 5, 95-percentiles deviate less than
1% from the mean (100 repetitions).

The sizes of the request sets grow with k and p, which
results in increased capability for parallelization, and, at
the same time, the number of required iterations decreases.
This observation agrees well with the speedups for Xeon
E2680v3 and Xeon Phi which are shown in Fig. 2 and 3. Be-

https://arxiv.org/abs/1604.02113v1

https://arxiv.org/abs/1604.02113v1

Final Exam Review Session
• Implementations
• Edge List
• Adjacency Matrix
• Adjacency List

• Traversals
• Breadth First
• Depth First

• Minimum Spanning Tree
• Kruskal’s Algorithm
• Prim’s Algorithm

• Shortest Path
• Dijkstra’s Algorithm
• Floyd-Warshall’s Algorithm

...and this is just the beginning. The journey continues to CS 374!

