CS 225

Data Structures

November 12 - Graphs
Wade Fagen-Ulmschneider

Graphs

To study all of these structures:

1. A common vocabulary

2. Graph implementations
3. Graph traversals
4. Graph algorithms

Graph Vocabulary

$$
|V|=n
$$

$$
\begin{equation*}
|E|=m \tag{2,5}
\end{equation*}
$$

Incident Edges:
$I(v)=\{(x, v)$ in $E\}$
Degree(v): |||
Adjacent Vertices:
$A(v)=\{x:(x, v)$ in $E\}$
Path $\left(G_{2}\right)$: Sequence of vertices connected by edges

Cycle(G_{1}): Path with a common begin and end vertex.

Simple Graph(G): A graph with no self loops or multi-edges.

Graph Vocabulary

$$
\begin{aligned}
& G=(V, E) \\
& |V|=n \\
& |E|=m
\end{aligned}
$$

Running times are often reported by \mathbf{n}, the number of vertices, but often depend on m, the number of edges.

How many edges? Minimum edges:
Not Connected:

Connected*:

Maximum edges:

Simple:
Not simple:

$$
\sum_{v \in V} \operatorname{deg}(v)-
$$

Connected Graphs

\bigcirc

Proving the size of a minimally connected graph

Theorem:
Every connected graph $\mathbf{G}=(\mathbf{V}, \mathbf{E})$ has at least |V|-1 edges.

Thm: Every connected graph G=(V, E) has at least |V|-1 edges.

Proof: Consider an arbitrary, connected graph G=(V, E).

Suppose |V|=1:
Definition: A connected graph of 1 vertex has 0 edges.

Theorem: $|\mathrm{V}|-1$ edges $\rightarrow 1-1=0$.

Inductive Hypothesis: For any $\mathbf{j}<|\mathbf{V}|$, any connected graph of \mathbf{j} vertices has at least j-1 edges.

Suppose |V|>1:

1. Choose any vertex:
2. Partition:

Suppose |V|>1:
3. Count the edges

Graph ADT
Data:

- Vertices
- Edges
- Some data structure maintaining the structure between vertices and edges.

Functions:

- insertVertex(K key);
- insertEdge(Vertex v1, Vertex v2, K key);
- removeVertex(Vertex v);
- removeEdge(Vertex v1, Vertex v2);
- incidentEdges(Vertex v);
- areAdjacent(Vertex v1, Vertex v2);
- origin(Edge e);
- destination(Edge e);

Graph Implementation: Edge List

insertVertex(K key);
 removeVertex(Vertex v);
 areAdjacent(Vertex v1, Vertex v2);

incidentEdges(Vertex v);

Graph Implementation: Adjacency Matrix

 insertVertex(K key); removeVertex(Vertex v); areAdjacent(Vertex v1, Vertex v2); incidentEdges(Vertex v);

