CS 225

Data Structures

October 16 - kd-Tree and Btrees Intro
 G Carl Evans

Range-based Searches

Balanced BSTs are useful structures for range-based and nearest-neighbor searches.

Q: Consider points in 1D: $\mathbf{p}=\left\{\mathbf{p}_{1}, \mathrm{p}_{2}, \ldots, \mathrm{p}_{\mathrm{n}}\right\}$. ...what points fall in [11, 42]?

Ex:

Range-based Searches
Q: Consider points in 1D: $\mathbf{p}=\left\{\mathbf{p}_{1}, \mathrm{p}_{2}, \ldots, \mathrm{p}_{\mathrm{n}}\right\}$.
...what points fall in [11, 42]?

Range-based Searches

Running Time

Midpoint Grade CDF

Range-based Searches
Consider points in 2D: $p=\left\{p_{1}, p_{2}, \ldots, p_{n}\right\}$.

Q: What points are in the rectangle:
$\left[\left(x_{1}, y_{1}\right),\left(x_{2}, y_{2}\right)\right]$?

Q: What is the nearest point to $\left(\mathbf{x}_{1}, \mathbf{y}_{1}\right)$?

Range-based Searches
Consider points in 2D: $\mathbf{p}=\left\{\mathbf{p}_{1}, \mathbf{p}_{2}, \ldots, \mathbf{p}_{\mathrm{n}}\right\}$.

Space divisions:

Range-based Searches

kD-Trees

kD-Trees

CS 225 - Midpoint Grade Update

B-Trees

B-Trees

Q: Can we always fit our data in main memory?

Q: Where else can we keep our data?

However, Our big-O has assumed uniform time for all operations.

Vast Differences in Time

A $\mathbf{3 G H z}$ CPU performs 3 m operations in \qquad .

Old Argument: "Disk Storage is Slow"

- Bleeding-edge storage is pretty fast: SSD
- Large Disks (25 TB+) still have slow throughout:

New Argument: "The Cloud is Slow!"

AVLs on Disk

Real Application

Imagine storing driving records for everyone in the US:

How many records?

How much data in total?

How deep is the AVL tree?

BTree Motivations

Knowing that we have large seek times for data, we want to:

BTree (of order m)

-3	8	23	25	31	42	43	55
$m=9$							

Goal: Minimize the number of reads!
Build a tree that uses \qquad

BTree Insertion

A BTrees of order \mathbf{m} is an m-way tree:

- All keys within a node are ordered
- All leaves contain hold no more than $\mathbf{~ m - 1}$ nodes.

BTree Insertion

When a BTree node reaches m keys:

BTree Recursive Insert

BTree Recursive Insert

| -3 | 8 |
| :--- | :--- | :--- |\quad| 25 | 31 |
| :--- | :--- | :--- |\quad| 43 | 55 |
| :--- | :--- |

BTree Visualization/Tool

https://www.cs.usfca.edu/~galles/visualization/BTree.html

Btree Properties

A BTrees of order \mathbf{m} is an m-way tree:

- All keys within a node are ordered
- All leaves contain hold no more than $\mathbf{m - 1}$ nodes.
- All internal nodes have exactly one more key than children
- Root nodes can be a leaf or have [2, m] children.
- All non-root, internal nodes have [ceil(m/2), m] children.
- All leaves are on the same level

BTree Search

BTree Search

BTree Analysis

The height of the BTree determines maximum number of
\qquad possible in search data.
...and the height of the structure is: \qquad .

Therefore: The number of seeks is no more than \qquad .
...suppose we want to prove this!

BTree Analysis

In our AVL Analysis, we saw finding an upper bound on the height (given \mathbf{n}) is the same as finding a lower bound on the nodes (given h).

We want to find a relationship for BTrees between the number of keys (\mathbf{n}) and the height (\mathbf{h}).

