

Kruskal's Algorithm

```
Pseudocode for Kruskal's MST Algorithm
   KruskalMST(G):
 2
      DisjointSets forest
      foreach (Vertex v : G):
 4
        forest.makeSet(v)
 5
 6
      PriorityQueue Q
                         // min edge weight
      foreach (Edge e : G):
8
        Q.insert(e)
9
10
      Graph T = (V, \{\})
11
12
      while |T.edges()| < n-1:
13
        Vertex (u, v) = Q.removeMin()
14
        if forest.find(u) != forest.find(v):
15
           T.addEdge(u, v)
16
           forest.union( forest.find(u),
17
                         forest.find(v) )
18
19
      return T
```

Kruskal's Running Time Analysis

We have multiple choices on which underlying data structure to use to build the Priority Queue used in Kruskal's Algorithm:

Priority Queue Implementations:	Неар	Sorted Array
Building : 6-8		
Each removeMin :13		

Based on our algorithm choice:

Priority Queue Implementation:	Total Running Time
Неар	
Sorted Array	

Reflections

Why would we prefer a Heap?

Why would be prefer a Sorted Array?

Partition Property

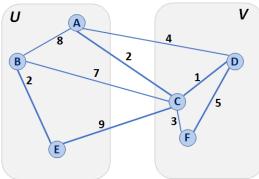
Consider an arbitrary partition of the vertices on **G** into two subsets **U**

and V.

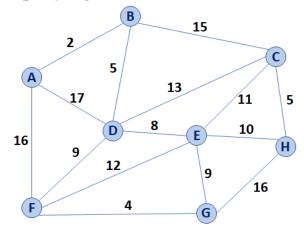
Let **e** be an edge of minimum weight across the partition.

Then **e** is part of some minimum spanning tree.

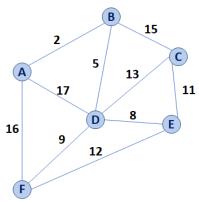
Proof in CS 374!



Partition Property Algorithm



Prim's Minimum Spanning Tree Algorithm



	Pseudocode for Prim's MST Algorithm		
1	PrimMST(G, s):		
2	<pre>Input: G, Graph;</pre>		
3	s, vertex in G, starting vertex of algorithm		
4	Output: T, a minimum spanning tree (MST) of G		
5			
6	foreach (Vertex v : G):		
7	d[v] = +inf		
8	p[v] = NULL		
9	d[s] = 0		
10			
11	PriorityQueue Q // min distance, defined by d[v]		
12	Q.buildHeap(G.vertices())		
13	Graph T // "labeled set"		
14			
15	repeat n times:		
16	<pre>Vertex m = Q.removeMin()</pre>		
17	T.add(m)		
18	foreach (Vertex v : neighbors of m not in T):		
19	if $cost(v, m) < d[v]$:		
20	d[v] = cost(v, m)		
21	p[v] = m		
22			
23	return T		

	Adj. Matrix	Adj. List
Неар		
Unsorted Array		

Running Time of MST Algorithms

Kruskal's Algorithm:

Prim's Algorithm:

Q: What must be true about the connectivity of a graph when running an MST algorithm?

...what does this imply about the relationship between **n** and **m**?

Kruskal's MST	Prim's MST

Q: Suppose we built a new heap that optimized the decrease-key operation, where decreasing the value of a key in a heap updates the heap in amortized constant time, or O(1)*. How does that change Prim's Algorithm runtime?

Final big-O Running Times of classical MST algorithms:

Kruskal's MST	Prim's MST

CS 225 - Things To Be Doing:

- 1. Programming Exam C is different than usual schedule: Exam: Monday, Dec 2 – Wednesday, Dec 4
- 2. MP7 Released Slightly different structure: Deadline on Tuesday, Dec. 3 for Part 1
- 3. lab_ml in lab this week also due Tuesday, Dec. 3!
- **4.** Daily POTDs are ongoing for +1 point /problem but pausing over break