

#35: Adjacency List + BFS
November 13, 2019 · G Carl Evans

Graph Implementation #3: Adjacency List

Vertex List Edges

u

v

w

z

a

b

c

d

Operations on an Adjacency Matrix implementation:
 insertVertex(K key):

 removeVertex(Vertex v):

 incidentEdges(Vertex v):

 areAdjacent(Vertex v1, Vertex v2):

 insertEdge(Vertex v1, Vertex v2, K key):

Running Times of Classical Graph Implementations

 Edge List Adj. Matrix Adj. List

Space n+m n2 n+m

insertVertex 1 n 1

removeVertex m n deg(v)

insertEdge 1 1 1

removeEdge 1 1 1

incidentEdges m n deg(v)

areAdjacent m 1 min(deg(v),
deg(w))

Big Picture Ideas: Comparing Implementations
Q: If we consider implementations of simple, connected graphs, what
relationship between n and m?

- On connected graphs, is there one algorithm that underperforms the
other two implementations?

 …what if our graph is sparse and not connected?

Q: Is there clearly a single best implementation?

- Optimized for fast construction:

- Optimized for areAdjacent operations:

Graph Traversal

Objective: Visit every vertex and every edge in the graph.
Purpose: Search for interesting sub-structures in the graph.

We’ve seen traversal before – this is different:

BST Graph

BFS Graph Traversal:

Pseudocode for BFS
1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27

BFS(G):
 Input: Graph, G
 Output: A labeling of the edges on
 G as discovery and cross edges

 foreach (Vertex v : G.vertices()):
 setLabel(v, UNEXPLORED)
 foreach (Edge e : G.edges()):
 setLabel(e, UNEXPLORED)
 foreach (Vertex v : G.vertices()):
 if getLabel(v) == UNEXPLORED:
 BFS(G, v)

BFS(G, v):
 Queue q
 setLabel(v, VISITED)
 q.enqueue(v)

 while !q.empty():
 v = q.dequeue()
 foreach (Vertex w : G.adjacent(v)):
 if getLabel(w) == UNEXPLORED:
 setLabel(v, w, DISCOVERY)
 setLabel(w, VISITED)
 q.enqueue(w)
 elseif getLabel(v, w) == UNEXPLORED:
 setLabel(v, w, CROSS)

Vertex

(v)
Distance

(d)
Prev.

(p) Adjacent

A

B

C

D

E

F

G

H

BST Graph Observations

1. Does our implementation handle
disjoint graphs? How?

a. How can we modify our
code to count
components?

2. Can our implementation detect a cycle? How?

CS 225 – Things To Be Doing:
1. Programming Exam C is different than usual schedule:

 Exam: Monday, Dec 2 – Wednesday, Dec 4
2. lab_dict starting; due on Sunday, Nov 17
3. MP6 EC+5 due tonight; final due date on Monday, Nov. 18
4. POTD ongoing

