

#33: Graph Vocabulary + Implementation

November 8, 2019 · G Carl Evans

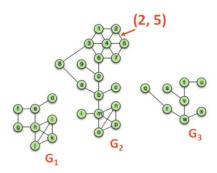
Motivation:

Graphs are awesome data structures that allow us to represent an enormous range of problems. To study these problems, we need:

- 1. A common vocabulary to talk about graphs
- 2. Implementation(s) of a graph
- 3. Traversals on graphs
- 4. Algorithms on graphs

Graph Vocabulary

Consider a graph G with vertices V and edges E, G=(V,E).



Incident Edges:

$$I(v) = \{ (x, v) \text{ in } E \}$$

Degree(v): |I|

Adjacent Vertices:

$$A(v) = \{ x : (x, v) \text{ in } E \}$$

Path(G₂): Sequence of vertices connected by edges

Cycle(G₁): Path with a common begin and end vertex.

Simple Graph(G): A graph with no self loops or multi-edges.

Subgraph(G): G' = (V', E'):

$$V' \in V$$
, $E' \in E$, and $(u, v) \in E \rightarrow u \in V'$, $v \in V'$

Graphs that we will study this semester include:

Complete subgraph(G)

Connected subgraph(G)

Connected component(G)

Acyclic subgraph(G)

Spanning tree(G)

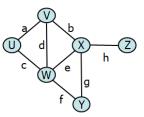
Size and Running Times

Running times are often reported by \mathbf{n} , the number of vertices, but often depend on \mathbf{m} , the number of edges.

For arbitrary graphs, the **minimum** number of edges given a graph that is:

Not Connected:

Minimally Connected:*



The **maximum** number of edges given a graph that is:

Simple:

Not Simple:

The relationship between the degree of the graph and the edges:

Proving the Size of a Minimally Connected Graph

Theorem: Every connected graph G=(V, E) has at least |V|-1 edges.

Proof of Theorem

Consider an arbitrary, connected graph **G=(V, E)**.

Suppose |V| = 1:

Definition:

Theorem:

<u>Inductive Hypothesis:</u> For any j < |V|, any connected graph of j vertices has at lest j-1 edges.

Suppose |V| > 1:

1. Choose any vertex:

-

-

 $-C_0 :=$

$$-C_{k}, k=[1...d] :=$$

3. Count the edges:

$$|\mathbf{E}_{\mathbf{G}}| =$$

...by application of our IH and Lemma #1, every component C_k is a minimally connected subgraph of G...

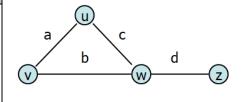
$$|\mathbf{E}_{\mathbf{G}}| =$$

Graph ADT

Data	Functions
1. Vertices	<pre>insertVertex(K key);</pre>
2. Edges	<pre>insertEdge(Vertex v1, Vertex v2,</pre>
3. Some data structure maintaining the structure between vertices and edges.	<pre>removeVertex (Vertex v); removeEdge (Vertex v1, Vertex v2);</pre>
	<pre>incidentEdges(Vertex v); areAdjacent(Vertex v1, Vertex v2);</pre>
	<pre>origin(Edge e); destination(Edge e);</pre>

Graph Implementation #1: Edge List

Vert.	Edges
u	a
\mathbf{v}	b
\mathbf{w}	c
Z	d



Operations:

insertVertex(K key):

removeVertex(Vertex v):

areAdjacent(Vertex v1, Vertex v2):

incidentEdges(Vertex v):

CS 225 – Things To Be Doing:

- 1. Theory Exam 3 is ongoing!
- 2. lab_heaps due Sunday, November 10th
- 3. MP6 released; Extra Credit +7 deadline November 11th
- 4. Daily POTDs are ongoing!