CS , 2,	#24: BTree Analysis + Hashing Intro October 21, 2019 · G Carl Evans
2 5	October 21, 2019 \cdot G Carl Evans

BTree Properties

For a BTree of order **m**:

- 1. All keys within a node are ordered.
- 2. All leaves contain no more than **m-1** nodes.
- 3. All internal nodes have exactly **one more children than keys**.
- 4. Root nodes can be a leaf or have [2, m] children.
- 5. All non-root, internal nodes have [ceil(m/2), m] children.
- 6. All leaves are on the same level.

BTree An	alt	7616
Directm	ıaıy	919

The height of the BTree determines maximum number of _____ possible in search data.

...and the height of our structure:

Therefore, the number of seeks is no more than: ______.

...suppose we want to prove this!

BTree Proof #1

In our AVL Analysis, we saw finding an **upper bound** on the height (\mathbf{h} given \mathbf{n} , aka $\mathbf{h} = \mathbf{f}(\mathbf{n})$) is the same as finding a **lower bound** on the keys (\mathbf{n} given \mathbf{h} , aka $\mathbf{f}^{\mathbf{1}}(\mathbf{h})$).

Goal: We want to find a relationship for BTrees between the number of keys (**n**) and the height (**h**).

BTree Strategy:

- 1. Define a function that counts the minimum number of nodes in a BTree of a given order.
 - a. Account for the minimum number of keys per node.

2. Proving a minimum number of nodes provides us with an upper-bound for the maximum possible height.

Proof:

1a. The minimum number of <u>nodes</u> for a BTree of order **m** at each level is as follows:

level is as follows.
root:
level 1:
level 2:
level 3:
level h:
1b. The minimum total number of <u>nodes</u> is the sum of all levels:
2. The minimum number of keys:

3. Finally, we show an upper-bound on height:

So, how good are BTrees?

Given a BTree of order 101, how much can we store in a tree of height=4?

Minimum:

Maximum:

Hashing

Locker Number	Name
103	
92	
330	
46	
124	

...how might we create this today?

Goals for Understanding Hashing:

1. We will define a **keyspace**, a (mathematical) description of the keys for a set of data.

2. We will define a function used to map the **keyspace** into a small set of integers.

All hash tables consists of three things:

- 1.
- 2.
- 3.

A Perfect Hash Function

...characteristics of this function?

A Second Hash Function

0	
1	
2	
3	
3 4 5 6	
5	
6	
7	
8	
9	
10	
11	
12	
13	
13 14	
15	

...characteristics of this function?

CS 225 - Things To Be Doing:

- 1. Programming Exam B starts Thursday
- 2. MP4 is due tonight by 11:59pm; MP5 released Tuesday
- 3. lab_btree released on Wednesday
- 4. Daily POTDs are ongoing!