BTree Properties

For a BTree of order \mathbf{m} :

1. All keys within a node are ordered.
2. All leaves contain no more than $\mathbf{m - 1}$ nodes.
3. All internal nodes have exactly one more children than keys.
4. Root nodes can be a leaf or have $[\mathbf{2}, \mathbf{m}]$ children.
5. All non-root, internal nodes have [ceil(m/2), m] children.
6. All leaves are on the same level.

BTree Analysis

The height of the BTree determines maximum number of possible in search data.
...and the height of our structure:

Therefore, the number of seeks is no more than: \qquad .
...suppose we want to prove this!

BTree Proof \#1
In our AVL Analysis, we saw finding an upper bound on the height (\mathbf{h} given \mathbf{n}, aka $\mathbf{h}=\mathbf{f}(\mathbf{n})$) is the same as finding a lower bound on the keys (\mathbf{n} given \mathbf{h}, aka $\mathbf{f}^{-1}(\mathbf{h})$).

Goal: We want to find a relationship for BTrees between the number of keys (\mathbf{n}) and the height (\mathbf{h}).

BTree Strategy:

1. Define a function that counts the minimum number of nodes in a BTree of a given order.
a. Account for the minimum number of keys per node.
2. Proving a minimum number of nodes provides us with an upper-bound for the maximum possible height.

Proof:

1a. The minimum number of nodes for a BTree of order \mathbf{m} at each level is as follows:

```
root:
level 1:
level 2:
level 3:
level h:
```

1b. The minimum total number of nodes is the sum of all levels:
2. The minimum number of keys:
3. Finally, we show an upper-bound on height:

So, how good are BTrees?

Given a BTree of order 101, how much can we store in a tree of height $=4$?

Minimum:

Maximum:

Hashing

Locker Number	Name
103	
92	
330	
46	
124	

...how might we create this today?

Goals for Understanding Hashing:

1. We will define a keyspace, a
(mathematical) description
of the keys for a set of data.

2. We will define a function used to map the keyspace into a small set of integers.

All hash tables consists of three things:
1.
2.
3.

A Perfect Hash Function

(Beckman, CS 421)
(Cunningham, CS 210)
(Davis, CS 101)
(Evans, CS 126)

(Fagen-Ulmschneider, CS 225)
(Gunter, CS 422)
(Herman, CS 233)

...characteristics of this function?

A Second Hash Function

...characteristics of this function?

$\mathbf{0}$	
1	
2	
3	
4	
5	
6	
7	
8	
9	
10	
11	
12	
13	
14	
15	

CS 225 - Things To Be Doing:

1. Programming Exam B starts Thursday
2. MP4 is due tonight by 11:59pm; MP5 released Tuesday
3. lab_btree released on Wednesday
4. Daily POTDs are ongoing!
