

#22: kd-Trees and BTrees Intro
October 16, 2019 · G Carl Evans

Range-based Searches:
Q: Consider points in 1D: p = {p1, p2, …, pn}.
 …what points fall in [11, 42]?

Tree Construction:

Range-based Searches:

Running Time:

Extending to k-dimensions:
Consider points in 2D: p = {p1, p2, …, pn}:

 …what points are inside a range (rectangle)?
 …what is the nearest point to a query point q?

kd-Tree Motivation:
First, let’s try and divide our space up:

kd-Tree Construction:
How many dimensions exist in our input space?

How do we want to “order” our dimensions?

0.00%

20.00%

40.00%

60.00%

80.00%

100.00%

0.00% 20.00% 40.00% 60.00% 80.00% 100.00%

St
ud

en
ts

Course Grade (of 410) w/o EC

Midpoint Grade CDF

Motivation
Can we always fit our data in main memory?

Where else do we keep our data?

-

-

 vs. CPU: 3 GHz == 3m ops / _________ * ___ cores

AVL Operations on Disk:

How deep do AVL trees get?

BTree Motivations
Knowing that we have long seek times for data, we want to build a
data structure with two (related) properties:

1.

2.

BTreem

Goal: Build a tree that uses _________________ /node!
 …optimize the algorithm for your platform!

A BTree of order m is an m-way tree where:

1. All keys within a node are ordered.
2. All leaves contain no more than m-1 nodes.

BTree Insert, using m=5

…when a BTree node reaches m keys:

CS 225 – Things To Be Doing:
1. Programming Exam B starts next Thursday (Oct 24th)
2. MP4 extra credit ongoing (final deadline Monday, Oct. 16th)
3. lab_avl released this week; course feedback in lab this week!
4. Daily POTDs are ongoing!

