



AVL Insertion

AVL Removal

Running Times:

	AVL Tree
find	
insert	
remove	

Motivation:

Big-O is defined as:

Let **f(n)** describe the height of an AVL tree in terms of the number of nodes in the tree (**n**). Visually, we can represent the big-O relation:

 $f(n) \le c \times g(n)$: Provides an upper bound:

The height of the tree, f(n), will always be <u>less than</u> $\mathbf{c} \times \mathbf{g}(n)$ for all values where $\mathbf{n} > \mathbf{k}$.

 $f^{-1}(h) \ge c \times g^{-1}(h)$: Provides a lower bound:

The number of nodes in the tree, $f^{-1}(h)$, will always be <u>greater</u> than $c \times g^{-1}(h)$ for all values where n > k.

Plan of Action: Goal: Find a function that defines the lower bound on n given h .	Proving our IH:	
Given the goal, we begin by defining a function that describes the smallest number of nodes in an AVL of height h :		
	V. Using a proof by induction, we have shown that:	
	and by inverting our finding:	
Theorem: An AVL tree of height h has at least		
I. Consider an AVL tree and let h denote its height.II. Case:	Summary of Balanced BSTs:	
11. Case	Advantages	Disadvantages
III. Case:		
IV. Case:		
Inductive hypothesis (IH):	CS 225 – Things To Be Doing: 1. Theory Exam 2 is ongoing! 2. MP4 extra credit submission ongoing – due Monday! 3. lab_huffman is due on Sunday 4. Daily POTDs are ongoing!	