

#17: BST Remove

October 4, 2019 \cdot *G* Carl Evans

BST.cpp							
	template <class class="" k,="" v=""></class>						
	<pre>void BST::_insert(TreeNode *& root, K & key, V & value) {</pre>						
	TreeNode *t = find(root, key);						
	t = new TreeNode(key, value);						
	3						

 Running time?
 Bound by?

What happens when we run the bugged code above?

How do we fix the code?

remove(13)

One-child Remove	Two-child remove

BinaryTree.cpp							
	template <class class="" k,="" v=""></class>						
	<pre>void BST::_remove(TreeNode *& root, const K & key) {</pre>						
	}						

BST Analysis:

Every operation we have studied on a BST depends on:

...what is this in terms of the amount of data, n?

BST – Simple Proofs

Q: Given a height **h**, what is the <u>maximum</u> number of nodes (**n**) in a valid BST of height **h**? Provide an outline of a proof.

Q: Given a height **h**, what is the <u>minimum</u> number of nodes (**n**) in a valid BST of height h? Provide an outline of a proof.

Final BST Analysis For every height-based algorithm on a BST:

Lower Bound:

Upper Bound:

Why use a BST over a linked list?

Q: How does our data determine the height?

1324576

operation	BST Avg. Case	BST Worst Case	Sorted Array	Sorted List
find	~~~~~			
insert				
delete				
traverse				

Height Balance on BST

What tree makes you happier?

Q: How many different ways are there to insert data into a BST?

vs.

4236715

We define the **height balance** (b) of a BST to be:

Q: What is the average height of every arrangement?

We define a BST tree T to be **height balanced** if:

...what is the intuition here?

CS 225 – Things To Be Doing:

- 1. Theory Exam 2 starts next Thursday (topic list is available now!)
- 2. MP3 due Monday; MP4 released on Tuesday
- **3.** lab_trees is due Sunday, Oct. 6
- **4.** Daily POTDs